Object. To draw normal dispersion curve by using a spectrometer and determine the Cauchy's constants.

Apparatus: Spectrometer, mercury lamp, prism, diffraction

grating, spirit-level, reading lens, reading lamp, etc.

Spectrometer: It is an important laboratory instrument used for the study of spectra produced by prisms and gratings, for the measurement of dispersive powers, wavelengths of spectral lines and the refractive indices of solids and liquids

Its essential parts are a collimator, a prism-table and a telescope (fig. 0).



(Fig. 6)

- (1) Collimator: It consists of a metallic tube whose axis is fixed and horizontal. At one end of the tube there is a converging lens  $L_1$ , and at the other end is a draw tube of metal carrying a slit, the width of which can be varied by means of a screw. The main tube is provided with a rack and pinion arrangement to move the draw tube inside it.
- (2) Prism Table: It is a circular table provided with a platform on which the prism (or grating) is placed. The platform can be

raised to a suitable height and can be rotated along with the prism table about the axis of the spectrometer. The rotation of the table can be measured by noting the positions of the two verniers  $V_1$  and  $V_2$  on a circular scale. Parallel lines and concentric circles are drawn on the platform. They help in placing the prism in the desired position. The platform is provided with three platform is provided with three platform is the table is provided with clamping and tangent screws.



(Fig.7)

(3) Telescope: It is a horizontal metallic tube having an achimatic convex lens  $L_2$  at one end. At the other end it carries a short coaxial tube containing the cross-wires. Within this tube slides another small tube containing a Ramsden's eyepiece. Te distance between the objective and the cross-wires can be alter d by a rack and pinion arrangement, while that between the cross-wires and the eyepiece can be altered by hand. The telescope c n be rotated about the axis of the spectrometer and is provided with levelling screws, as well as with clamping and tangent scre s. Its position can be read on the circular scale (which is attached to it) by means of verniers  $V_1$  and  $V_2$ .

Theory: The normal dispersion curve is a graph of the refr ctive index  $\mu$  of a prism of a given material against the wavelen th of light,  $\lambda$ , in the visible region. It can be fairly-accurately represented by Cauchy's equation

$$\mu = A + \frac{B}{\lambda^2},$$

where A and B are Cauchy's constants which are characteristic of the material of the prism. Therefore, in order to determine A and B, we have to determine  $\mu$  and  $\lambda$ .

 $\mu$  for a particular wavelength can be determined by measu ing the angle of prism A, and the angle of minimum deviation  $\delta_m$  produced by the prism in that wavelength. The formula is

$$\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}.$$

The proof of this formula has been given in the beginning of the chapter.

 $\lambda$  can be determined by means of a diffraction grating known element (e+d) by measuring the angle of diffraction  $\theta$  of that wavelength for a particular order n. The formula for normal incidence is

$$\lambda = \frac{(e+d)\sin\theta}{n}.$$

The proof of this formula has also been given in the beginning of the chapter.

Adjustment of the Spectrometer: The following adjustments are made in a spectrometer before use:

- (i) Focussing the Eyepiece on the cross-wires: The telescope is directed towards an illuminated surface (say, a white wall) and the distance between the cross-wires and the eyepiece is altered until the cross-wires are seen as distinct as possible. This focuses the eye-piece on the cross-wir s.
- (ii) Focussing of Collimator and Telescope for Parallel Light [Schuster's Method]—The slit of the collimator is made vertical and narrow, and illuminated with sodium light (or mercury light). The prism is placed approximately in the position of minimum deviation. The prism table is now rotated slightly away from this position bringing the refracting edge of the prism towards the telescope (Fig. 8 a). The telescope is rotated until the refracted image (or the spectrum) becomes visible in the field of view. The telescope is now focussed on the image as distinctly as possible.



(Fig. 8)

The prism table is now rotated slightly to the other side of the minimum deviation position so that the refracting edge goes towards the collimator (Fig. 8 b). Now the collimator is focussed until on looking through the telescope the image (or spectrum) is again as distinct as possible. This process is repeated by alternately focusing the collimator and telescope until the rotations of the prism do not cause the image (or spectrum) to go out of focus. When this is the case, both the collimator and the telescope are in good adjustment, the former for rendering a beam of light parallel, and the later for focussing a parallel beam of light.

(iii) Adjustment of the Prism table—The platform of the prism table is made horizontal with the help of spirit-level and levelling screws P, Q and R. The prism is then placed on the platform such that the refracting edge coincides with the centre, and one of its refracting faces, say AB (Fig. 9) is perpendicular to the line joining the two screws Q and R. The slit is illuminated with sodium (or mercury) light and the prism table is rotated until the light falls equally on both the faces AB and AC bounding the refracting angle A. The telescope is now rotated until the image reflected from the face AB becomes visible. If the image does not lie at the centre of the field of view then the levelling screws Q and R are adjusted

until the image becomes central. Next the telescope is rotated to see the image of the slit reflected from the face AC. This image is made central in the field of view by adjusting the levelling screw P alone. When the images reflected from both the faces of the prism lie in the centre of the field of view, then the prism table is said to be optically levelled.

Procedure: The experiment is performed in two parts: (i) using a prism, (ii) using a grating. In the

90° Oā (Fig, 9)

first part we measure the angle of prism, and the angle of minimum deviations for different spectral lines. In the second part we measure the angle of diffraction for different spectral lines in a parti-

cular order and find the grating element. (i a) Measurement of Angle of Prism (A)—The prism is placed on the prism table as in the adjustment of the prism table i.e., the refracting edge A coincides with the centre of the table and the face AB remains perpendicular to the line joining the two screws Q and R (Fig. 9). The table is now rotated so that the light falls equally on both the faces AB and AC bounding the refracting angle A. The prism is then clamped.

The slit of the spectrometer is illuminated with white light (mercury lamp). The telescope is rotated say, to the right hand side and is clamped when the image of the slit formed by reflection

LYOSCOPY)

at one face of the prism becomes visible in the field of view. Now, by tangent screw the telescope is moved slowly until its vertical cross-wire coincides with the image Both the verniers of the spectrometer are read. The telescope is now rotated to the left hand side and adjusted by means of the tangent screw such that the image of the slit formed by reflection at the other face of the prism coincides with the vertical cross-wire. The verniers of the spectro. meter are again read. Half the difference of the two readings of the same vernier gives the refracting angle of the prism i.e. A.

(i b) Measurement of the Angle of Minimum Deviation  $(\delta_m)$ : The prism is placed on the prism table such that the main axis of rotation of the instrument passes through the circumcentre of the prism, and the light dispersed through it is received in the telescope i.e., the spectrum appears in the field of view. Now the prism table is slowly rotated in such a direction that the deviation of the rays decreases. The telescope is also rotated so as to keep the spectrum in the field of view. The rotation is continued until the spectrum comes to momentary rest and then returns back. position of the prism at which the spectrum is just at rest is the position of minimum deviation. The prism table is clamped in this position.

The position of the telescope is so adjusted by means of the tangent screw that the intersection of the cross-wire is, turn by turn, exactly at the centre of the various spectral lines. The readings of both the verniers are noted for each line.

Now the prism is removed without disturbing the prism table and the telescope is turned to receive the direct image of the slit on the cross-wire and its position is again read. The readings of both the verniers are again noted. The difference in the readings of the same verniers are found. The difference in the readings of the same vernier for this position and the previous position of the telescope for a particular spectral line gives the values of  $\delta_m$  for that

- (ii a) Measurement of the Angle of Diffraction ( $\theta$ )—The following adjustments are made with the grating :-
- (1) The grating is adjusted on the prism table such that light from the collimator falls 'normally' on it—To do this, the telescope is set in line with the collimator so that the direct image of the slit falls on the intersection of the cross-wires. The position of the telescope is noted. The telescope is turned through 90° from this position and clamped. The axis of the telescope is now perpendicular to that of the collimator. The grating is placed on the prism table such that its ruled surface lies over the centre of the table and is perpendicular to the line joining the levelling screws Q and R(Fig. 10 a). The prism table is now rotated till the image of the slit obtained by reflection from the surface of the grating is obtained on the intersection of the cross-wires (Fig. 10 b) and then clamped.



Its position is noted on any one vernier. The levelling screws Q and R are adjusted until the image lies equally above and below the intersection of the cross-wires.

In this position the grating surface is at 45° to the incident light. From this position the prism table is rotated through 45° in the proper direction so that the ruled surface of the grating is normal to the incident light and faces the telescope. The prism table is clamped in this position.

(2) The Rulings of the grating are adjusted parallel to the axis of the spectrometer—To do this, the diffracted images of the slit (or the spectrum) are observed through the telescope. The levelling screw P (Fig. 10 a) is now adjusted until the centres of all the diffracted images lie at the same height in the field of view.

(3) The rulings are adjusted parallel to the slit— o do this, the slit is rotated in its own plane until the diffracted images (spectral line)

iral lines) are as sharp as possible.

Now, to determine  $\theta$  for the lines whose wavelengths are to be determined, the telescope is rotated to see those lines in the first order on either side of the direct image. The telescope is turned by means of the tangent screw so that these lines fall, turn by turn, on the intersection of the cross-wires, and the readings of both the verniers are taken for each line. The telescope is then turned to the other side of the direct image, and the corresponding leadings for the same lines in the first order are again taken. The difference between the two readings of the same vernier for a parti-

cular line gives  $2\theta$  for that line, from which  $\theta$  is found. The process

is repeated for the second order.

(ii b) Determination of the Grating Element (e+d): It determined from the number of rulings per inch on the grating (this is written on the grating). If this number is N, then N(e+d)=1 inch=2.54 cm.

$$\therefore (e+d) = \frac{2.54}{N} \text{ cm.}$$

Observations: (1) Table for the Angle of Prism (A): Least count of the spectrometer vernier = .....

| S. No.      | Vernier | Light reflected from the face AB |                    |                    | Light r                  | Difference<br>of two<br>readings of |               |                                      |
|-------------|---------|----------------------------------|--------------------|--------------------|--------------------------|-------------------------------------|---------------|--------------------------------------|
|             |         | Main<br>Scale<br>reading         | Vernier<br>reading | Total reading      | Main<br>scale<br>reading | Vernier<br>reading                  | Total reading | the same                             |
| 1 . 2 3     | $V_1$   |                                  | 3 61073            | (0) L <sub>1</sub> |                          |                                     |               |                                      |
| 1<br>2<br>3 | $V_2$   | works<br>ood ans                 | ing a              | IT to it.          | T 200<br>Of Fact         |                                     | nu botal      | Hasangsh<br>Laaks on h<br>Safangtaan |
|             | 14 L    |                                  |                    |                    |                          |                                     | 44,1395       | SHIRMARE                             |

Mean 2A

## (2) Table for the Angle of Minimum Deviation $[\delta_m]$

| S. No.                                          | Spectral<br>line<br>(colour)                           | Vernier reading in Minimum deviation position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | Vernier reading in Direct position |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angle of minimum deviation $(\delta_m)$ |                     | an 8m<br>+(b-d) |
|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|-----------------|
|                                                 |                                                        | $V_1$ (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $V_2 \ (b)$ | (c)                                | $V_2 \choose (d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_1$ $(a - c)$                         | $V_2 \choose (b-d)$ | (a-c)           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | $R_1$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••                                     | 1                   | 1               |
|                                                 | $R_2$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                     |                 |
|                                                 | $\left \begin{array}{c} Y_1 \\ Y_2 \end{array}\right $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                     |                 |
|                                                 | $G_1$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                     |                 |
|                                                 | $G_2$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | E. Z.                              | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                     | •••             |
|                                                 | $G_3$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000000     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                     |                 |
|                                                 | $G_4$                                                  | tu de la constante de la const |             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                     |                 |
|                                                 | B                                                      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                     |                 |
|                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                     |                 |
|                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    | STATE OF THE STATE | 134 dec 22 13                           |                     |                 |
| -                                               | 1 2                                                    | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••         |                                    | HORE SHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 14/61                                |                     |                 |
|                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••                                     | •••                 | -               |

For the Angle of Diffraction  $[\theta]$ :

Reading of the telescope when in line with the collimator ... Reading of the telescope when rotated through 90° --Reading of the prism table when reflected image coincided with

Reading of the prism table when rotated through 45° = ..... Table for 1st order (n = 1) Spectrum

| S. No.<br>Spectral<br>line                                                   | Vernier reading<br>for R H.S.<br>Spectrum |              | Vernier reading for L.H.S. Spectrum |                                            |                           |                 | Mean<br>20 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-------------------------------------------|--------------|-------------------------------------|--------------------------------------------|---------------------------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spec                                                                         | $V_1$ $(a)$                               | $V_2 $ $(b)$ | V <sub>1</sub> (c)                  | $\begin{vmatrix} V_2 \\ (d) \end{vmatrix}$ | $V_1$ $(a \rightarrow c)$ | $V_2$ $(a - d)$ | (b-d)      | The state of the s |
| 1 R <sub>1</sub> 2 R <sub>2</sub>                                            |                                           |              |                                     |                                            |                           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 R <sub>2</sub><br>3 Y <sub>1</sub><br>4 Y <sub>2</sub><br>5 G <sub>1</sub> |                                           |              |                                     |                                            |                           |                 |            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 Y <sub>2</sub> 5 G <sub>1</sub>                                            |                                           |              | •••                                 |                                            |                           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 G <sub>2</sub>                                                             |                                           |              |                                     |                                            |                           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 G <sub>3</sub><br>8 G <sub>4</sub>                                         | •••                                       |              |                                     |                                            |                           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 B                                                                          |                                           |              |                                     |                                            |                           |                 | ***        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c c} 10 & V_1 \\ 1 & V_2 \end{array}$                         |                                           |              | :::                                 |                                            |                           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                            |                                           |              |                                     |                                            | 1                         |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

A similar table is drawn for the second order (n=2) spectrum.

(4) No. of lines per inch on the grating  $N = \dots$ 

: grating element  $(e+d) = \frac{2.54}{N} = \dots cm$ .

Calculations: Table for the determination of  $\mu$ ,  $\lambda$  and  $1/\lambda^2$ 

| Spectral line   $\mu$                                 | θ of 1st<br>order | θ of 2nd order | $\lambda = \frac{(e^{-1})^n}{n=1 \text{ for } n=2  for $ | 1st order | Mean $\lambda$ | 1/\(\lambda^2\) |
|-------------------------------------------------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------------|
| $ R_1 $                                               |                   |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | <br>              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                | •••             |
| 3 Y <sub>1</sub>                                      | <br>              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         |                |                 |
| $\begin{array}{c c} 4 & Y_2 \\ 5 & G_1 \end{array}$   | <br>              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         |                |                 |
| $G_1$                                                 | <br>              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         |                |                 |
| $G_2$                                                 |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | •••            | 1               |
| $G_3$                                                 | <br>              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | ***            | 1               |
| 8 G <sub>4</sub>                                      |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                |                 |
| 9 B                                                   | <br>              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 1 :::          | 1               |
| $\begin{array}{c c} 10 & V_1 \\ 11 & V_2 \end{array}$ |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                |                 |
| 111 /2                                                |                   | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         |                |                 |

We plot a graph between the refractive index ' $\mu$ ' and the corresponding wavelength  $\lambda$ . The curve so obtained (fig. 11) is the normal dispersion curve.



(Fig. 11)

In order to calculate the Cauchy's constants, we plot a curve between ' $\mu$ ' and ' $1/\lambda^2$ ' as shown in fig. 12. The curve so obtained is a straight line. Its slope gives us the constant 'B', and its intercept on the  $\mu$  axis gives the constant 'A'.



From fig. 12 we have

$$A = OR = \dots$$

$$B = \frac{MS}{PS} = \dots \cdot \text{cm}^2.$$

Results: (1) The curve for normal dispersion is represented on the graph plotted between  $\mu$  and  $\lambda$ .

(2) The values of Cauchy's constants obtained from graph  $A = \dots = B = \dots = B^2$ .

## Precautions:

- (1) The adjustment of the spectrometer should be done systematically. The collimator and the telescope should be adjusted for parallel rays and the prism table should be levelled mechanically as well as optically.
- (2) The slit should be vertical and narrow and uniformly illuminated along its length.
- (3) The ruled surface of the grating should face the telescope and should be normal to the incident light.
- (4) The readings of both the verniers should be noted and the difference of the readings should be taken for the same vernier.
- (5) The surface of the prism or the grating should not be touched with fingers.

Criticism—The Cauchy's equation does not exactly agree with the experimental normal dispersion curve. It is in fact an approximation to 'Sellmeier's equation' given by

$$\mu^2 = 1 + \frac{a_0 \lambda^2}{\lambda^2 - \lambda_0^2} ,$$

where  $a_0$  and  $\lambda_0$  are two constants, the latter being the wavelength in vacuum. This equation gives a more accurate representation of  $\mu$  in regions far from absorption bands than does the Cauchy equation with same number of constants.

If the Cauchy's formula is taken to three or four terms, it represents the experimental facts more accurately but proves unsatisfactory when applied to the region of infra-red. It also fails to account for the anomalous dispersion.