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Abstract
In this article, we establish a common fixed-point theorem for a sequence of fuzzy mappings satisfying a rational
contractive condition involving non-expansive mapping.
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1. Introduction
The first important result on fixed points for contractive type
mappings was the well-known Banach contraction principle
[1] appeared in explicit form in Banach’s thesis in 1922, where
it was used and established the existence of a solution for an
integral equation. Zadeh[2] familiarized the idea of a fuzzy
set as a new way to represent vagueness in everyday life. The
study of fixed point theorems in fuzzy mathematics was in-
vestigated by Weiss [3], Butnariu [4], Singh and Talwar [5],
Mihet [6], Qiu et al. [7], and Beg and Abbas [8] and many
others. Heilpern [9] first used the concept of fuzzy mappings
to prove the Banach contraction principle for fuzzy mappings
on a complete metric linear space. The result obtained by
Heilpern [9] is a fuzzy analogue of the fixed point theorem
for multivalued mappings of Nadler et al. [10]. Bose and Sa-
hani [11], Vijayaraju and Marudai [12], improved the result of
Heilpern. In some earlier work, Watson and Rhoades [13],[14]

proved several fixed-point theorems involving a very general
contractive definition. In this paper, we prove a common
fixed point theorem for sequence of fuzzy mappings satis-
fyinga rational contractive condition involving nonexpansive
mapping.Our results extend and generalized the correspond-
ingresults of Bose and Sahani [11], Vijayaraju and Mohanraj
[12] and Rhoades [15],[16], Salujaet al. [18] and Das and
Gupta [19].

2. Preliminaries
We recall some mathematical basics and definitions to make
this paper self-sufficient (see [9]).

Definition 2.1. Let (M,m) be a complete linear metric space
and F (M), the collection of all fuzzy sets in M. A fuzzy set
in Mis a function with domain M and values in [0,1]. If Ais a
fuzzy set and σ ∈M, then the function value A(σ) is called
the grade of membership of σ in A. The α -level set of Ais
denoted by

Aα ={σ : A(σ)≥ α} if α ∈ (0,1]

A0 ={σ : A(σ)> 0}

where B̄ stands for the (non-fuzzy) closure of a set B.
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Definition 2.2. A fuzzy set A is said to be an approximate
quantity if and only if Aα is compact and convex for each
α ∈ (0,1] andsup σ∈MA(σ) = 1, when Ais an approximate
quantity and A(σ0) = 1 for some σ0 ∈M, Ais identified with
an approximation of σ0. From the collection F (M), a sub-
collection of all appropriate quantities is denoted as W (M).

Definition 2.3. The distance between two appropriate quanti-
ties is defined by the following scheme. Let A,B ∈W (M) and
α ∈ [0,1],

Dα(A,B) = inf
σ∈Aα ,ς∈Bα

m(σ ,ζ )

Hα(A,B) =distm(Aα ,Bα)

H(A,B) =sup
α

Dα(A,B)

wherein the dist is in the sense of Hausdorff distance .The
function Dα is called an α -distance (induced by m ), Hα aα -
distance (induced by dist) and H a distance between Aand B.
Note that Dα is a non-decreasing function of α .

Definition 2.4. Let A,B ∈W (M). Then Ais said to be more
accurate than B, denoted by A⊂ B, iff A(σ)≤ B(σ) for each
σ ∈ M. The relation ⊂ induces a partial ordering on the
family W (M).

Definition 2.5. Let Y be an arbitrary set and M be any metric
space. Sis called a fuzzy mapping if and only if S is a mapping
from the set Y into W (M). A fuzzy mapping F is a fuzzy subset
of Y ×M with membership function S(ς ,σ). The function
value S(ζ ,σ) is the grade of membership of σ in S(S). Note
that each fuzzy mapping is a set valued mapping. Let A ∈
S(M),B ∈ S(Y ). Then fuzzy set S(A) in S(M) is defined by

S(A)(σ) = sup
ς∈M

(S(ς ,σ)
∧

A(ς)),σ ∈M

and the fuzzy set S−1(B) in S(Y ) is defined by

S−1(B)(ς) = sup
σ∈M

S(ς ,σ)
∧

B(σ),ς ∈ Y

Lee [17] proved the following.

Lemma 2.6. Let (M,m) be a complete linear metric space, S
is a fuzzy mapping from Minto W (M) and σ0 ∈M, then there
exists an σ1 ∈M such that {σ1} ⊂ S (σ0).

The following two lemmas are due to Heilpern [9].

Lemma 2.7. Let σ ∈M,A ∈W (M) and {σ} a fuzzy set with
membership function equal to a characteristic function of {σ}.
If {σ} ⊂ A, then Dα(σ ,A) = 0 for each α ∈ [0,1].

Lemma 2.8. Let A,B ∈W (M),α ∈ [0,1] and Dα(A,B) =
infσ∈Aα ,ζ∈Bα

m(σ ,ζ ),where Aα = {σ : A(σ)≥ α}, then

Dα(σ ,A)≤ m(σ ,ς)+Dα(ζ ,A)

for each σ ,ς ∈M.

Lemma 2.9. Let Hα(A,B) = distm(Aα ,Bα),where ’dist’ is-
the Hausdorff distance. If {σ0 ⊂ A}, then Dα (σ0,B)≤Hα(A,B)
for each B ∈W (M).

Rhoades [15] proved the following common fixed point
theorem involving a very general contractive condition, for
fuzzy mappings on complete linear metric space. He proved
the following theorem.

Theorem 2.10. Let (M,m) be a complete linear metric space
and let S,T be fuzzy mappings from Minto W (M) satisfying

H(Sσ ,T c)≤ Q(m(σ ,ς)) (2.1)

where

m(σ ,ς) =max
{

m(σ ,ς),Dα(σ ,Sσ),Dα(ς ,T ς),

Dα(σ ,T ς)+Dα(s,Sσ)

2

}
and Q is a real-valued function defined on D, the closure of
the range of m, satisfying the following three conditions:

(a) 0 < Q(s)< sfor each s ∈ D\{0} and Q(0) = 0,

(b) Q is non-decreasing on D, and

(c) f (s) = s/s−Q(s) is non-increasing on D\{0}.

Then there exists a point z in X such that {z} ⊂ Sz∩T z.

In [16] Rhoades, generalized the result of Theorem 2.10
for sequence of fuzzy mappings on complete linear metric
space. He proved the following theorem.

Theorem 2.11. Let f be a non-expansive self-mapping of a
complete linear metric space (M,m) and {Si }bea sequence
of fuzzy mappings from M into W (M). For each pair of fuzzy
mappings Si,S j and for any σ ∈M,{ησ}⊂ Si(σ), there exists
a
{

µς

}
⊂ S j(s) for all ς ∈M such that

D
(
{ησ} ,

{
µς

})
≤ Q(m(σ ,ζ )) (2.2)

Where

m(σ ,ς) =max

{
( f (σ), f (s)),m( f (σ), f (ησ )) ,m

(
f (s), f

(
µς

))
,

m
(

f (σ), f
(
µς

))
,+m( f (ς), f (ησ ))

2

}

and Q satisfying the conditions (a)-(c) of Theorem 2.10. Then
there exists {z} ⊂

⋂
∞
i=1 Si(z).

3. Main Results
Now, we give our first main result.
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Theorem 3.1. Let f be a non-expansive self-mapping of a
complete linear metric space (M,m) and {Si }bea sequence
of fuzzy mappings from M into W (M). For each pair of fuzzy
mappings Si,S j and for any σ ∈M,{ησ}⊂ Si(σ), there exists
a
{

µς

}
⊂ S j(s) for all ς ∈M such that

D
(
{ησ} ,

{
µς

})
≤Q
(

max
{

m( f (σ), f (s)),m( f (σ), f (ησ )) ,

m
(

f (s), f
(
µς

))
,

m( f (ς), f (µc)) [1+m( f (σ), f (ησ ))]

1+m( f (σ), f (s))

})
(3.1)

and Q satisfying the conditions (a)-(c) of Theorem 2.10. Then
there exists {ξ} ⊂

⋂
∞
i=1 Si(ξ ).

Proof. Let σ0 ∈ M. Then we can choose σ1 ∈ M such that
{σ1} ⊂ Sσ0 by Lemma 2.6. From the hypothesis, there exists
an σ1 ∈M such that {σ2}⊂ Sσ1 and Since f is a nonexpansive
self- mapping, from (3.1), we have

D({σ1} ,{σ2})

≤Q

max


m( f (σ0) , f (σ1)) ,m( f (σ1) , f (σ2)) ,

m( f (σ0) , f (σ1)) ,
m( f (σ1), f (σ2))[1+m( f (σ0), f (σ1))]

1+m( f (σ0), f (σ1))




≤max{m( f (σ0) , f (σ1)) ,m( f (σ1) , f (σ2))}

≤max{m(σ0,σ1) ,m(σ1,σ2)} (3.2)

Inductively, we obtain a sequence {σn} such that {σn+1} ⊂
Sn+1 (σn) and

D({σn} ,{σn+1})

≤ Q

max


m( f (σn−1) , f (σn)) ,m( f (σn) , f (σn+1)) ,

m( f (σn−1) , f (σn)) ,
m( f (σn), f (σn+1))[1+m( f (σn−1), f (σn))]

1+m( f (σn−1), f (σn))




≤max{m( f (σn−1) , f (σn)) ,m( f (σn) , f (σn+1))}

≤max{m(σn−1,σn) ,m(σn,σn+1)} (3.3)

Since D({σn} ,{σn+1}) = m(σn,σn+1) it follows from (3.2)
thatm (σn,σn+1)< m(σn−1,σn). Using this fact back in (3.1),
we obtain that m(σn,σn+1)≤ m(σn−1,σn). Substituting into
(3.2) we obtain

m(σn,σn+1)<Q(m(σn−1,σn))< Q2 (m(σn−2,σn−1))

< · · ·< Qn (m(σ0,σ1)) (3.4)

From Lemma 2 of [17], limn→∞ Qn (m(σ0,σ1)) = 0. To show
that {σn} is Cauchy, choose N so large thatQn (m(σ0,σ1))≤

( 1
2

)n
for all n > N. Then, for r > n > N

m(σn,σr)≤ m(σn,σn+1)+m(σn+1,σn+2)+ · · ·
+m(σr−1,σr)

=
r−1

∑
j=n

m
(
σ j,σ j+1

)
≤

r−1

∑
j=n

Q j (m(σ0,σ1))

≤
r−1

∑
j=n

(
1
2

) j
<

(
1
2

)n−1
(3.5)

and {σn} is Cauchy, hence convergent. Call the limit ξ .
Let Sm be an arbitrary member of the sequence{ Si} . Since
{σn} ⊂ Sr (σn−1), there exists a µn ∈ M such that {µn} ⊂
Sr(ξ ) for all n and applying (3.1), we have

D({σn} ,{{µn}})

≤ Q

max


m( f (σn−1) , f (ξ )) ,m( f (ξ ), f (µn)) ,

m( f (σn−1) , f (σn)) ,
m( f (ξ ), f (µn))[1+m( f (σn−1), f (σn))]

1+m( f (σn−1), f (ξ ))




< Q

max


m( f (σn−1) , f (ξ )) ,m( f (ξ ), f (µn)) ,

m( f (σn−1) , f (σn)) ,
m( f (ξ ), f (µn))[1+m( f (σn−1), f (σn))]

1+m( f (σn−1), f (ξ ))




≤ Q
(

max
{

m(σn−1,ξ ) ,
m(ξ ,µn) [1+m(σn−1,σn)]

1+m(σn−1,ξ )

})
(3.6)

Suppose that limn→∞ µn 6= ξ . Taking the limit as n→ ∞

yields, since Q is continuous (Lemma 1 of [13]

limsup
n→∞

m(ξ ,µn)≤Q
(

limsup
n→∞

m(ξ ,µn)

)
< limsup

n→∞

m(ξ ,µn)

This is a contradiction. Therefore,lim n→∞µn = ξ . Since
Sr(ξ ) ∈W (M),Sr(ξ ) is upper semi continuous and therefore,
limsupn→∞ [Sr(ξ )] (µn)≤ [Sr(ξ )] (ξ ). Since {µn}⊂ Sr(ξ ) for
all [Sr(ξ )] (ξ ) = 1. Hence {ξ} ⊂ Sr(ξ ). Since Sr is arbitrary,
{ξ} ⊂ ∩∞

i=1Si(ξ ).

Theorem 3.2. Let f be a nonexpansive self-mapping of a
complete linear metric space (M,m) and {Si} be a sequence
of fuzzy mappings from M into W (M). For each pair of fuzzy
mappings Si,S j and for any σ ∈M,{ησ}⊂ Si(σ), there exists
a
{

µς

}
⊂ S j(s) for all s ∈M such that

D
(
{ησ} ,

{
µς

})
≤max


m( f (σ), f (s)),m

(
f (s), f

(
µς

))
,

m( f (σ), f (ησ )) ,
m( f (s), f(µς))[1+m( f (σ), f (ησ ))]

1+m( f (σ), f (s))


−w

 m( f (σ), f (ς)),m
(

f (s), f
(
µς

))
,

m( f (σ), f (ησ )) ,
m( f (s), f (µs))[1+m( f (σ), f (ησ ))]

1+m( f (σ), f (s))

 (3.7)
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for all σ ,ς ∈M,w : R+→ R+ be a continuous functionsuch
that 0 < w(r) < r for all r > 0. Then there exists {ξ} ⊂⋂

∞
i=1 Si(ξ ), i.e. ξ is a commonfixed point of the sequence of

fuzzy mappings.

Proof. Let σ0 ∈ M. Then we can choose σ1 ∈ M such that
{σ1} ⊂ Sσ0 by Lemma 2.6. From the hypothesis, there ex-
ists an σ1 ∈ M such that {σ2} ⊂ Sσ1 and Since f is a non-
expansive self-mapping, from (3.7), we have

D({σ1} ,{σ2})

≤max


m( f (σ0) , f (σ1)) ,m( f (σ1) , f (σ2)) ,

m( f (σ0) , f (σ1)) ,
m( f (σ1), f (σ2))[1+m( f (σ0), f (σ1))]

1+m( f (σ0), f (σ1))


−w

max


m( f (σ0) , f (σ1)) ,m( f (σ1) , f (σ2)) ,

m( f (σ0) , f (σ1)) ,
m( f (σ1), f (σ2))[1+m( f (σ0), f (σ1))]

1+m( f (σ0), f (σ1))




= max{m( f (σ0) , f (σ1)) ,m( f (σ1) , f (σ2))}
−w(max{m( f (σ0) , f (σ1)) ,m( f (σ1) , f (σ2))})
≤max{m(σ0,σ1) ,m(σ1,σ2)}
−w(max{m(σ0,σ1) ,m(σ1,σ2)})

The last inequality gives

m(σ1,σ2) =D({σ1} ,{σ2})
≤max{m(σ0,σ1) ,m(σ1,σ2)}
−w(max{m(σ0,σ1) ,m(σ1,σ2)})

which implies that

m(σ1,σ2)≤ m(σ0,σ1)−w(m(σ0,σ1)) (3.8)

Similarly

m(σ2,σ3)≤ m(σ1,σ2)−w(m(σ1,σ2)) (3.9)

Inductively, we obtain a sequence {σn} such that {σn+1} ⊂
Sn+1 (σn) and

m(σn,σn+1)≤ m(σn−1,σn)−w(m(σn−1,σn))
(3.10)

Adding (3.8)− (3.10), we obtain

n

∑
i=0

w(m(σi,σi+1))≤ m(σ0,σ1)−m(σn,σn+1)< m(σ0,σ1)

Therefore
n

∑
i=0

w(m(σi,σi+1))< ∞, lim
n→∞

w(m(σn,σn+1)) = 0

Now suppose that {σn} is not a Cauchy sequence, thenthere
is an ε > 0 such that for each positive even integer 2k, there
exists positive even integer 2r > 2n > 2k such that

m(σ2n,σ2r)≥ ε (3.11)

Also, for each 2k, we may find the least 2m exceeding 2n such
that

m(σ2n,σ2r−2)< ε (3.12)

Since {m(σn,σn+1)} is a decreasing sequence of non-negative
terms, it converges, call the limit ξ . Suppose that ξ > 0. Then,
since w is continuous,

lim
n→∞

w(m(σn,σn+1)) = w(ξ )

But limn→∞ w(m(σn,σn+1)) = 0. Hence w(ξ ) = 0, which is
a contradiction to the fact that 0 < w(ξ ) < ξ . Hence ξ = 0
and then

lim
n→∞

m(σn,σn+1) = 0 (3.13)

Now

ε ≤m(σ2n,σ2r)≤ m(σ2n,σ2r−2)+m(σ2r−2,σ2r−1)

+m(σ2r−1,σ2r) (3.14)

Using (3.11)-(3.14), we obtain

m(σ2n,σ2r)→ ε as k→ ∞ (3.15)

Note that

|m(σ2r,σ2n+1)−m(σ2r,σ2n)| ≤ m(σ2n,σ2n+1)

|m(σ2r+1,σ2n+1)−m(σ2r,σ2n+1)| ≤ m(σ2r,σ2r+1)

|m(σ2r,σ2n+2)−m(σ2r,σ2n+1)| ≤ m(σ2n+1,σ2n+2)

|m(σ2r+1,σ2n+2)−m(σ2r+1,σ2n+1)| ≤ m(σ2n+1,σ2n+2)

which implies thatas k→ ∞,

m(σ2r,σ2n+1)→ ε, m(σ2r+1,σ2n+1)→ ε

m(σ2r,σ2n+2)→ ε,m(σ2r+1,σ2n+2)→ ε (3.16)

Again applying (3.7), we get

m(σ2r+1,σ2n+2) = D({σ2r+1} ,{σ2n+2})

≤max


m( f (σ2r) , f (σ2n+1)) ,m( f (σ2n+1) ,

f (σ2n+2)) ,m( f (σ2m) , f (σ2m+1))
m( f (σ2n+1), f (σ2n+2))[1+m( f (σ2m), f (σ2m+1))]

1+m( f (σ2m), f (σ2n+1))


−w

 m( f (σ2r) , f (σ2n+1)) ,m( f (σ2n+1) , f (σ2n+2)) ,
m( f (σ2r) , f (σ2r+1))

m( f (σ2n+1), f (σ2n+2)[1+m( f (σ2m), f (σ2m+1))])
1+m( f (σ2m), f (σ2n+1))


≤max


m(σ2r,σ2n+1) ,m(σ2n+1,σ2n+2) ,

m(σ2r,σ2r+1) ,
m(σ2n+1,σ2n+2)[1+m(σ2r ,σ2r+1)]

1+m(σ2r ,σ2n+1)


−w

max


m(σ2r,σ2n+1) ,m(σ2n+1,σ2n+2) ,

m(σ2r,σ2r+1) ,
m(σ2n+1,σ2n+2)[1+m(σ2r ,σ2r+1)]

1+m(σ2r ,σ2n+1)



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Using (3.13), (3.16) and taking the limit as k→ ∞, we get

ε ≤max{ε,0,0}−w(max{ε,0,0})

which gives a contradiction. Thus {σn} is a Cauchysequence
and since M is complete, it converges to some ξ ∈M.

Let Sr be an arbitrary member of the sequence {Si}. Since
{σn} ⊂ Sr (σn−1), by Lemma 2.6, there exists a µn ∈M such
that {µn} ⊂ Sr(ξ ) for all n and applying (3.7) again, we have

m(σn,µn) = D({σn} ,{µn})

≤max
{

m( f (σn−1) , f (ξ )) ,

m( f (ξ ), f (µn)) [1+m( f (σn−1) , f (σn))]

1+m( f (σn−1) , f (ξ ))

}
−w

(
max

{
m( f (σn−1) , f (ξ )) ,

m( f (ξ ), f (µn)) [1+m( f (σn−1) , f (σn))]

1+m( f (σn−1) , f (ξ ))

})
≤max

{
m(σn−1,ξ ) ,

m(ξ ,µn) [1+m(σn−1,σn)]

1+m(σn−1,ξ )

}
−w

(
max

{
m(σn−1,ξ ) ,

m(ξ ,µn) [1+m(σn−1,σn)]

1+m(σn−1,ξ )

})
Suppose that limn→∞ µn 6= ξ . Taking the limit as n→∞ yields

m(ξ ,µn)≤ m(ξ ,µn)−w(m(ξ ,µn))

Since w is continuous, we get a contradiction. Therefore,
limn→∞ µn = ξ . Hence {ξ} ⊂ Sr(ξ ). Since Sr is arbitrary,
{ξ} ⊂

⋂
∞
i=1 Si(ξ ).
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