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Abstract- In this communication, A septic B-spline method (SBSM) is descrived for numerical treatment of
fourth order self adjoint (FOSA) singularly perturbed boundary value problems (SPBVPs) and method is
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1. Introduction
We consider the following fourth order self adjoint SPBVPs:

—eu”(y)+a(yu(y)=r(y),  ve[p q] (1)
with the boundary condition (BC):

y(p)=a, y(a)=4,

2
y'(p)=a,, y'(a)=2,. @

where ey, a,, B, and g, are constants and perturbation parameter ¢ is O<egl[] 1. We suppose that the

functions a(y) and r(y) are smooth functions in [p, q]. A singular perturbation problems (SPPs) is arise

in nuomarus regions of mathematical and engineering science for instant fluid dynamics, optimal control
theory, chemistry, hydrodynamics, quantum physics, chemical reactor theory and reaction-diffusion process
etc.
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Beginning in the mid of the nineteenth century and especially during the past few decades, there have
been intense efforts in numerical solution of SPPs with a huge literature. Researchers were interested in the
development of varies numerical techniques that work for all estimations of the singular perturbation
parameter & . Numerical treatment of SPPs presents some computational challenges because of boundary
layers regions. There are sone more possible way to tackle these problems, for the detail of the methods
researcher may refer the books [4, 11] references therein. Wang [16] has presented the numerical solution of
nonlinear SPP on non uniform nodal points which are more compact in the inner boundary layer as
compared the outer boundary layer. The basic concept of the numerical method is based upon the integral
equation and found that it gives fourth order uniform accuracy. Vulanovic [15] has studied the
transformation discretization method and which have a relation of layer—resolving (LR) transformations with
mesh generating functions to evaluate the approximate solution of non linear SPBVPs. The examination is
done for 1-D quasilinear problem in absence of turning point, which are discretized through first order
finite difference method (FDM). The approximate solutions of 1-D SPPs converge uniformly in & when
general LR function has been used to develop the discretization mesh points. Mishra and Saini [13] have
studied the various numerical technique to find the approximate solution of SPBVPs.

Cakir et al. [5] have developed the FDM on a uniform mesh to find the numerical treatment of SP three
points BVPs. They have also discussed the nature of exact solution at boundary points and derived the first
derivative. Mohapatra and Shakti [10] have presented an adaptive mesh to obtain the approximate treatment
of one dimensional singularly perturbed pseudo parabolic problem. Backward Euler method is used to
obtain the mesh point of time derivative and spatial derivative is discretized with central difference method
on uniform mesh. Avijit and Natesan [3] have described the convergence analysis of streamline-diffusion
finite element method (FEM) for two-parameter SPBVPs in the discrete streamline-diffusion norm. Another
very interesting and different boundary value problems is solved by using spline techniques [8, 14] and for
the details of spline function sereachers may refer the book [11]. Akram and Naheed [1, 2] have described
the approximate solution of fourth order SPBVPs by using quintic and septic spline in very effective
manner. Saini and Mishra [13] have presented the quartic B-spline method for approximate treatment of 3™
order self adjoint SPBVPs. Lodhi and Mishra [7] have developed non polynomial spline for numerical
treatment of fourth order SPBVPs. In this article, we developed a SBSM for numerical treatment of FOSA
SPBVPs. Remeaning part of the article is organized as follows: description of the SBSM is presented in
section 2 and section 3 is devoted for the convergence of the SBSM. Numerical examples are discussed in
section 4 and conclusion of the work is described in the section 5.

2. Description of Septic B-spline technique
We devide the interval [p, q] into N number of subinterval and choose piecewise uniform mesh points
denoted by i.e. y.=y,+ih (i=0,1,...,N), suchthat y,=p and y, =qandh:%.Let L,[p, a]be a

vector space of all integrable function on [p, q] and Y be a linear subspace of L,[p, ]. Now we define

the septic B-spline basis functions B, (y) fori=0,1,...,N -1 N.
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(y_Yi_4)7' ye[yi—4’ yi—3]'
(y_yi—4)7_8(y_yi—3)7 yE[Yi-:w yi—z]'
(y_yi—4)7_8(y_yi—3)7+28(y_u|—2)7’ ye[yi—27 yi—l]'
(Y=Yia) =8(y=¥is) +28(y- Vi) =56(y=Yia)", Y€ [Yi Wi,
1
Bu(Y)Zh_y (yi+4_y)7_8(yi+3_y)7+28(yi+2_y)7_56(yi+l_y)71 ye[yi’ yi+1]’ 4)

(Yo =¥) =8(¥ia=Y) +28(Yia )’ Ye[Yia Vil
(yi+4_y)7_8(yi+3 Y)7 ye[yi+2’ yi+3]’
(Yi+4 Y)7 yE[Yi+3’ Yi+4]’
0, otherwise

Let us introduces eight additional mesh points as

Y <Y3<Yo<Yi1<¥andYy.\>Ynis>Yne
>Yya > Yy From Eq. (4), we easily say that each of the function B;(y) is six times continuously
differentiable in the entire real line. Also, the values of B, (y),B/(y),B/(y).B/(y).B"(y)and B’ (y) at

mesh points are given by table 1.
Table 1: Values of B;(Yy),B/(Yy).B/(y).B(y).B"(y) and B/(y) at nodes

y Yo | Yia | Vie Yis Y, Yia Yie | Yis | Vi
(y) 0 1 120 1191 2416 1191 120 1 0
hB/ (y) 0 7 392 1715 0 -1715 -392 -7 0
h? B"( ) 0 42 1008 630 -3360 630 1008 42 0
'( ) 0 210 1680 -3990 0 3990 -1680 -210 0
h4B' (y) 0 840 0 -7560 | 13440 -7560 0 840 0
h® BV(y) 0 2520 | -10080 | 12600 0 -12600 | 10080 | -2520 0

Since each B, (y) is also a piecewise septic polynomial with knots at =, eachB,(y)eS, (7). Let
Q={B,,B,,....By,, By.s} and letB,(z)=spanQ. The functions Q are linearly independent on [p,q].
Thus B, (7) is(N +7)-dimensional. Let S(y) be the B-spline interpolating function at the nodal points and

S(y)eB, (7). Then S(y) can be written as

N+3

=_:z_3diBi(y) (5)

The spline function and their derivative at the mesh points at y =y, are as follows:

S(y;)=d;_;+120d,_, +1191d,_, +2416d, +1191d,,, +120d,,, +d, , (6)

i+2

I yszs
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S'(y,)= %(—mig ~392d, , ~1715d, , +1715d,,, +392d,,, + 7d,.;) (7)

S"(y,)= h—12(42di3 +1008d, , +630d, , —3360d, +630d, , +1008d, , +42d, ;) 8)

S"(y,)= %(—modm ~1680d, , +3990d, , —3990d,,, +1680d, ., + 210d, ;) )

S¥(y,)= h—14(840di3 —7560d, , +13440d, — 7560d,,, +840d, ;) (10)
1

S"(¥)="(-25200, , +10080d, , ~12600d, , +12600d, , ~10080d,,, +2520d}.) (11)

Discretizing Eq.(1) at the nodal points y; (i=0,1, ..., N ), we have

—su" (y,)+a(yu(y,)=r(y)

Using equations (6), and (10) in above equation, we have

~£7(840d, , 7560, , +13440d, ~7560d,,, +840d, ,)

(12)
+a,(d, ;+120d, , +1191d, , +2416d, +1191d,,, +120d,,, +d,,;) =T,

where & =a(y;)and r,=r(y;)are the values of a(y) and r(y)at the nodal points y;(i=0,1,..,N) and
after simplifying Eq. (12). We obtain

W, (Y;) g+ W, (V5)dip + W (V) diy +w, (V) d,

s (13)
+Ws (Yi )di+1+W6 (Yi )di+2 +W; (Yi )dna = rih )
where
w, (y;)=-840s +ah’, w,(y,)=120ah*, w,(y,)="7560¢+1191ah’,
w, (y;)=—-13440¢ +2416a,h*,  w;(y,)=7560¢+1191ah*,
Wy (y;)=120a,h*, w,(y,)=-840¢+ah’, i=01,...,N.
From Eqg. (2), we obtain
d_, +120d_, +1191d_, +2416d, +1191d, +120d, +d, = o, (14)
—7d_,—392d_, —1715d_, +1715d, +392d, + 7d, = he, (15)
~7d, ,—392d,,_,-1715d, , +1715d,,, +392d,,., +7d,., =z, (16)
d,_,+120d,,_, +1191d, , +2416d, +1191d, , +120d, , +d,., = 3 (17)

Archives Available @ www.solidstatetechnology.us



Solid State Technology
Volume: 63 Issue: 6
Publication Year: 2020

Now, two more equations are requrited, Differentiating Eq. (1) with respect to Y and after simplifying, we
get

—eu” (y;)+alyu’(vi)+a'(ydu(yi) =r'(i)- (18)
Putting y = p in above Eq., we have
g0’ (p)+a(p)u'(p)+a(pu(p)=r(p). (19)
Using Egs, (6), (7) and (11) in Eq. (19), we obtain

m(p)ds+7,(p)dy+73(p)d_y +77,(p)do

. (20)
+15 (P)dy +7 (P)d; +7;, () dy =h°rg,
where
m(p)=2520c-7a(p)h*+a'(p)h°,  n,(p)=-10080s—392a(p)h*+120a’(p)h°,
n5(p)=12600¢ —1715a( p)h* +1191a’'(p)h®, n,(p)=2416a'(p)h°, Similar]
imilarly,
15 () =—12600¢ +1715a( p)h* +1191a’(p)h®, 5 (p) =10080¢ +392a( p)h* +120a’(p)h°, Y

1, (p)=-2520s+7a(p)h*+a’(p)h°, r,=r'(p).
substituting y =q in Eq. (18), we get

2(0)dy_a+ 4 () dy_p + A5 (a)dyg + 4 (9)dy

., (21)
+25 () Ay 1+ 46 (A) dysz + 47 (9) dys = D71,

where
A (q)=2520e-7a(q)h* +a’'(q)h®,  4,(q)=-10080s—392a(q)h* +120a’(q)h°,
(q)=12600¢ —1715a(q)h* +1191a'(q)h®, 4, (q)=2416a'(q)h’,
(q)=-12600s +1715a(q)h* +1191a’(q)h°, 4s(q)=10080¢ +392a(q)h* +120a’(q)h’,
(q)=-2520¢+7a(q)h* +a'(q)h°, r,=r'(q).

Coupling Egs. (13)-(17) and (20)-(21) in matrix form Ay =B, we have (N +7) linear equations with
(N +7) unknowns, where Ais a non-singular square matrix of order (N +7), y and B are column matrices
Of Order (N +7) i.e. y:[d_3,d_2,d_1,d0,dl,...,dN ,dN+1,dN+2,dN+3]T y

B :[al,azh, fih®, foh?, fh*,..., fyh?, fq'hS,ﬁzh,ﬂl]T and the coefficient matrix A is given by
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1 120 1191 2416 1191 120 1 0 0 0 0 0 0
7 392 1715 0 1715 392 7 0 0 0 0 0 0
m(p) m(p) m(p) m(p) u(p) m(p) m(p) O 0 0 0 0 0
W(Yo) Wo(¥o) WalYo) Wi(Yo) We(¥o) we(Yo) Wi(yo) O 0 0 0 0 0
0 w(y) w(y) w(v) wi(y) w(n) w(v) w(n) 0 0 0 0 0
0 0 w(y,) w(y,) wi(y,) w(y,) we(y,) we(¥,) w(y,) 0 0 0 0
0 0 0 : : : : : : : : : :
00 0 w(y) w(y) w(y) w(y) w(y) w(y) w(y) 0 0 0 0
0 0 0 0 0 W(Yaa) Wo(Vua) Wa(Vix) Wo(Yaa) Wo(Vs) We(Vas) Wo(Via) O
0 0 0 0 0 0 W) w(ve) w(ve) wa(ve) w(ve) We(va) wo(yy)
0 0 0 0 0 0 Ala)  4(a)  A4a) A i@ A@)  4(a)
0 0 0 0 0 0 7 392 -1715 0 1715 392 7
L 0 0 0 0 0 0 1 120 1191 2416 1191 120 |

On solving the system of equations Ay =B for unknowns i.e. d,,d,,d ;,d,,...,d,dy,, dy,, dy,sand

putting these values in Eqg. (5). After simplifying, we obtain the required numerical solution. All the
mathematical calculations are done by MATLAB software.

3. Convergence of Septic B-spline Method
In this section, Septic B-spline technique is deployed to estimate the truncation error over the interval

[P, q]. Here, we suppose that the function u('y) and their derivatives are continuous in the entire interval.

We compute the following equations by equating the coefficients of d. (i =-3,...,N +3) from Egs. (6) and

(7), we get
S'(Yi5)+120S'(y,_,)+1191S'(\y, , )+ 2416S'(y, ) +1191S'(y;,, ) +120S'(y;,, ) +S'(Virs)

= %{—7u (Via)—392u(y,, ) —1715u( Y, , ) +1715u( Yy, ) +392u (V;,, ) + 7u( V.., )}
Similarly from Eqgs. (6), (8), (9), (10) and (11), we obtain

(22)

S"(y_s)+120S"(y,_,)+1191S"(y,, )+ 2416S"(y; ) +1191S"(y..,) +120S"(V;,, ) +S"(Viss)

23
=h—12{42u(yi_3)+1008u(yi_2)+630u(yi_1)—3360u(yi)+630u(yi+1)+1008u(yi+2)+42u(yi+3)}( )
S"(y, 5)+1208"

1
= F{—ZlOu(yi_3

(Vo) +11918"(y, )+ 2416S"(y;)+1191S" (.., ) +120S" (Vi ,) +S" (Vi.3)
)—1680u(y,_,)+3990u(y, ,)—3990u(y,,, ) +1680u(y;,, )+ 210u(Yy,,; )} (24)
S"(y.4)+1208" (y, ,)+1191S"™ (y, ;) +2416S" (y, ) +1191S" (y;, ) +120S" (¥;.,) +S" (Vi.s)
_ h_14{840u(yi3) ~7560u(y, ;) +13440u(y;) ~ 7560u(y, ;) +840u(y, )} (25)
SY(y,5)+120S" (Y, ,)+1191S" (y,,)+2416S" (y,)+1191S" (y,.,) +120S" (V;., ) +S" (Vis)

= % {~2520u(y;_,)+10080u(y;_, ) —12600u(y_, ) +12600u(y,,,)—10080u(Y;,, )+ 2520u (Y., )} (26)

Using the operator notation [6, 9], the equation (22)-(26) can we write as
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S,(y)_g _7E®_392E%_1715E ' +1715E + 392E% + 7E? a(y,) @)
" h| E® +120E % +1191E * + 24161 +1191E +120E% + E® ‘

) 1 ( 42E7 +1008E° +630E ' —33601 +630E +1008E* +42E*®
S ( i):F 3 2 1 2 3 u(yi) (28)
E®+120E % +1191E " + 24161 +1191E +120E* +E

1 ( —210E % -1680E 2 +3990E * —3990E +1680E? + 210E*
S (yi ) = F 3 ) ) 2 U ( Yi ) (29)
E=+120E2 +1191E ! + 24161 +1191E +120E? +E

" 1 840E 2 — 7560E * +134401 — 7560E +840E*
S (yi):_4 3 2 1 2 3 u(yi> (30)
h*| E™ +120E™ +1191E~ + 24161 +1191E +120E“ + E

y 1 ( —2520E 2 +10080E % —12600E * +12600E —10080E? + 2520E*
S (yi)=_5 3 2 -1 2 3 u(yi) (31)
h E™ +120E™ +1191E + 24161 +1191E +120E- + E

where the operators are defined as Eu(y;)=u(y;+h), Du(y,)=u’(y;) and lu(y;)=u(y;). Let E=¢™

and expand them in powers of hD , we get

S'(yi):u'(y‘)_lslzoouix(y‘)+39911068uXi(y‘)m[h]n' (32
S”(yi):u”(yi)—Sh—f:ouV“i(yi)+1giirjoux(yi)—%ux”(yi)+o[h]1l. (33)
Sm(yi):um(y‘)+6228uix(y‘)_33rgoouXi(y‘)_2f71:;;ouXiii(y‘)+°[h]ll' 39

S (31) =" (1) o™ (1) o (1) oo ()l () o] (@)
Sv(y‘):uv(y‘)_%uix(y‘)+32;4uXi(y‘)_2222(830 " ‘)+1égéglgouw(y‘)+°[h]n’ (36)

We now definee(y)=u(y)—S(y)and putting the values of Egs. (32)-(36) in the Taylor series expansion of
e(y; +th)obtaining

t*(108 -7t 3_pars)
e(y,+th)= ( )hsuv...( i)+(12t+50t 63t jhgu'x(yi)

120960 1814400
t2 (1— 5t2)

_ 10, (. 11
362880 hu* () +o[h]",

(37)

where p<t<q.

Theorem: 1. Let u(y) be the exact solution and S(u) be the numerical treatment of FOSA SPBVPs (1) and

BC (2) for smaller values of h which provide the truncation error of O(h®), and scheme of convergence is
o(h").
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4. Numerical Examples

In this section, a SBSM is portrayed to evaluate the numerical solution of FOSA SPBVPs. It is applied on
two examples and numerical results are compared with previous applied methods.

Example: 1. Consider the following boundary value problem:
. ) 3
—eu™ (y)+pu(y)= (y—l)4 y¥sin(ey)-ey* {—1653 (y-1) y*(3y—2)cos(ey)
+96gy(14—84y +180y” ~165y° +55y" )cos (=)

+& (y—l)4 y*sin(ey)-24¢? (y—l)2 y? (14—44y+33y2)sin (ey)

+ 24(70—5o4y+1260y2 +320y° +495y4)sin (gy)}, ye[o, 1].
with the BCs:
u(0)=0, u(1)=0, u'(0)=0, u'(1)=0.
Table: 2. MAE and OC of example 1 for various values of & and h.

g N =20 N =40 N =80 N =160
1/20 5.2815E-08 3.8482E-09 2.4916E-10 1.5705E-11
oC 3.7787 3.9491 3.9877 3.9724
1/40 2.7322E-08 1.9911E-09 1.2892E-10 8.1281E-12
oC 3.7784 3.9490 3.9874 3.9823
1/80 1.4731E-08 1.0737E-09 6.9520E-11 4.3845E-12
oC 3.7782 3.9490 3.9870 4.0460

1/160 8.8218E-09 6.4640E-10 4.1921E-11 2.6435E-12
oC 3.7706 3.9467 3.9871 3.9959
Table: 3. Comparison of MAE of example 1 for various values of ¢ and h.
£ h=1/64 h=1/128
Present | Akramand | Akramand | Present | Akramand | Akramand
Method | Naheed [1] Amin [2] Method Naheed [1] Amin [2]

1/16 | 7.50E-10 | 2.61E-09 2.85E-08 | 4.75E-11 6.72E-11 6.68E-09

1/32 | 3.86E-10 | 1.34E-09 1.43E-08 2.44E-11 3.45E-11 3.36E-09

1/64 | 2.04E-10 | 7.13E-10 7.25E-09 1.29E-11 1.83E-11 1.69E-09
1/128 | 1.17E-10 | 4.09E-10 3.72E-09 7.42E-12 1.05E-11 8.62E-10
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Exact solution of the example 1 is
u(y)=(1-y)" y®sin(sy).

Numerical results of example 1 depected in tables 2, 3 and 4. Table 2 displays the maximum absolute error
(MAE) and order of convergence (OC) for different values of ¢ and h. Table 3 shows comparison with

existing methods and table 4 presents point wise numerical and exact solution for £ =102 and N =100.

Table: 4. Pointwise solution of example 1 for £ =107 and N =100.

y Numerical solution Exact solution
0.00 0.0000E-00 00000000
0.09 1.2042E-12 2.6567E-12
0.20 2.0910E-09 2.0972E-09
0.40 3.3972E-07 3.3974E-07
0.50 1.2207E-06 1.2207E-06
0.60 2.5798E-06 2.5799E-06
0.70 3.2686E-06 3.2686E-06
0.80 2.1474E-06 2.1475E-06
0.90 3.8741E-07 3.8742E-07
0.99 9.1202E-11 9.1350E-11
1.00 0.0000E-00 0.0000E-00

Table: 5. MAE and OC of example 2 for various values of ¢ and h.

g N =16 N =32 N =64 N =128
1/16 4.5559E-04 2.8450E-05 1.7785E-06 1.1116E-07
oC 4.0012 3.9997 3.9999 4.0060
1/32 1.0414E-04 6.5464E-06 4.0900E-07 2.5561E-08
oC 3.9918 4.0005 4.0001 3.9968
1/64 4.9514E-05 3.1226E-06 1.9504E-07 1.2187E-08
oC 3.9870 4.0009 4.0003 3.9924
1/128 2.2966E-05 1.4366E-06 8.9900E-08 5.6183E-09
oC 3.9988 3.9982 4.0001 4.0001

Example: 2. Consider the following boundary value problem:
—eu™ (y)+ p(y)u(y)= g((y—l)4 y* - 245 (5-60y + 210y? - 280y’ +126y4)), ye[-11]

with the BCs:

l092s
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u(-1)=-16e,

u(1)=0,

Exact solution of the example 2 is u(y)=¢y®(1-y)".

Numerical results of example 2 are depicted in table 5, 6 and 7. Table 5 displays the MAE and OC for
different values of ¢ and h. Table 6 shows comparison with existing methods and table 7 presents point

u"(~1) = -688¢,

wise numerical and exact solution for £ =102 and N =100.

u"(1)=0.

Table: 6. Comparison of MAE of example 2 for various values of ¢ and h.

g h=1/40 h=1/80
Present | Akramand | Akram and Present Akramand | Akram and
Method | Naheed [1] | Amin [2] Method Naheed [1] Amin [2]
116 | 7.28E-07 | 2.95E-06 8.10E-03 4.55E-08 8.05E-08 2.00E-03
1/32 | 1.68E-07 | 9.20E-07 2.00E-03 1.05E-08 2.25E-08 4.95E-04
1/64 | 7.99E-08 | 6.47E-07 1.00E-03 4.99E-09 1.42E-08 2.59E-04
1/128 | 3.68E-08 | 3.39E-07 4.93E-04 2.30E-09 7.20E-09 1.24E-04

5. Conclusion
In this study, we have discussed a SBSM to estimate the numerical solution of SAFO SPBVPs. This
methed is inmplimented on two numerical examples and threir results are shown in tables 2, 3, 4, 5, 6 and

Table: 7. Pointwise solution of example 2 for £ =10 and N =100.

y Numerical solution Exact solution
-1.0 -1.6000E-01 -1.6000E-01
-0.9 -7.6953E-02 -7.6953E-02
-0.5 -1.5822E-03 -1.5820E-03
-0.1 -2.1286E-07 -1.4641E-07
0.1 1.2180E-07 6.5610E-08
0.5 1.9726E-05 1.9531E-05
0.9 6.5103E-07 5.9049E-07
1.0 0.0000E-00 0.0000E-00
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7 through these results we can easily say that proposed method gives the better numerical results as

compared existing methods [1, 2] at the same values of & and h. Moreover, SBSM is computationally

capble and the algorithm can be effortlessly executed on computer.
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