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Abstract

The aim of this paper is to establish a fixed point theorem for rational type contraction in a
complete controlled metric space. Our results extend/generalize many pre-existing results in

literature. We also provide example which show the usefulness of these results.
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1. Introduction and Preliminaries

Dass and Gupta [26] established first fixed point theorem for rational contractive type
conditions in metric space.

Theorem 1.1 (see [26]). Let (X, d) be a complete metric space, and let 7: X — X be a self-
mapping. If there exist a, 8 € [0,1) witha + 8 < 1 such that

1+ d(x,T7x)]d(y.Ty)

d(Tx,Ty) < ad(x,y) + ﬁ[ 1+ d(x,y)

(1.1)

for all x,y € X, then 7" has a unique fixed point x* € X.

Nazam et al. [27] proved a real generalization of Dass-Gupta fixed point theorem in the frame
work of dualistic partial metric spaces.

Czerwik [1] reintroduced a new class of generalized metric spaces, called as b-metric spaces,
as generalizations of metric spaces.

Definition 1 ([1]). Let X be a nonempty set and s > 1. A function d;,: X X X — [0, o) is said
to be a b -metric if for all x,y, w € X,

(b1).dp(x,y) =0iffx =y
(02).d,(x,y) =dp(y,x) forall x,y € X
(b3).dp(x, w) < s[dp(x,y) + dp(y, )]
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The pair (X, d},) is then called a b-metric space. Subsequently, many fixed point results on such
spaces were given (see [2-7]).

Kamran et al. [8] initiated the concept of extended b-metric spaces.

Definition 2. Let X be a nonempty set and p: X X X — [1, ) be a function. A function
d.,: X x X — [0, ) is called an extended b -metric if for all x, y, w € X,

el).d.,(x,y) =0iffx =y
(€2).d,(x,y) =d,(y,x) forall x,y € X
(€3). d.(x, w) < p(x, w)[d.(x,y) + d.(y, w)]

The pair(X, d,) is called an extended b-metric space.
Very recently, a new kind of a generalized b-metric space was introduced by Mlaiki et al. [9].

Definition 3 ([9]). Let X be a nonempty set and p: X X X — [1, ) be a function. A function
d,:X x X — [0,0) is called a controlled metric if for all x,y,w € X,

(cl).d.(x,y) =0iffx =y
(c2).d.(x,y) =d,(y,x) forall x,y € X
(€3). do(x, w) < p(x, w)[d.(x,y) + d.(y, w)]

The pair (X, d,) is called a controlled metric space (see also [10]).
The Cauchy and convergent sequences in controlled metric type spaces are defined in this way

Definition 4 ([9]). Let (X,d_.) be a controlled metric space and {x,},>¢be a sequence in D.
Then,

1. The sequence {x,} converges to some x in X; if for every € > 0, there exists N =

N(¢) € N such that d.(x,, x) < € forall n = N. In this case, we write lim x,, = x.

n—-oo

2. The sequence {x,} is Cauchy; if for every € > 0, there exists N = N(&) € N such that
d,(xp, xy) < eforalln,m = N.
3. The controlled metric space (X,d.) is called complete if every Cauchy sequence is

convergent.
Definition 5 ([9]). Let (X, d.) be a controlled metric space. Let x € X and € > 0.

1. The open ball B(x, €) is
B(x,e) ={y € X:d.(y,x) < &}.
2. The mapping F: X — X is said to be continuous at x € X; if for all £ > 0, there exists

§ > 0 suchthat F(B(x,€)) S B(Fx, ).

The main purpose of this paper is to present some fixed point theorems for mappings involving

rational expressions in the context of complete controlled metric spaces. Our result extends and
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generalizes some well-known results in the literature. We also provide examples to show

significance of the obtained results involving rational type contractive conditions.
2 Results on Rational Type Contractions

Theorem 2.1. Let (X, d.) be acomplete controlled metric space. Let F: X — X be so that there

arey; € (0,1),Vi € {1,2} with A = 1V2y <1,
—r1

dc(Y:Fy)[l"'dc(x:Fx)

de(Fx, Fy) < y; 2222040l 4y d, (x, ) 1)

forall x,y € X. For x, € X, take x,, = F™x,. Assume that

sup lim ZXira Xt Cisifm) -1 ¥
mz=1 i—oo p(xi,xiﬂ)

Suppose that lim p(x,,x) and lim p(x, x,) exist, are finite, and y; lim p(x,x,) < 1 for
n—-oo n—-oo n—-oo

every x € X, then F possesses a unique fixed point.

Proof. Let x, € X be initial point. The considered sequence {x,} verifies x,,, = Fx,, for all

n € N. Obviously, if there exists n, € N for which x,, 41 = xy, then Fx, = x,,, and the

proof is finished. Thus, we suppose that x,,,; # x,, for every n € N. Thus, by (1), we have

dc(xn'xn+1) = dc(Fxn—lfon)

de(xn,Fxp)[1+d.(Xn—1,FXn_1)
1+d.(xXp—1,%Xn)

]
< )4 + dec (xn—l'xn)

= /1

de(xnxns)[1+de(Xn_1,%n)
1+do(Xn-1,%n)

]
+ Ych (xn—l' xn)

=N
= ¥1dc(Xn, Xns1) + V2d(Xn_1, %)
The last inequality gives
de(t, Xne1) < o de (X1, Xn) (3)
Thus, we have
de(n, Xn41) < Ade(Xn-1,%n) < A2d (-2, Xn—1) < -+ < A7 (x0, X1) (4)
For all n,m € N and n < m, we have

dc(xn' xm) < p(xn'xn+1)dc(xn, xn+1) + p(xn+1'xm)dc(xn+1;xm)
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< p(tn, Xp41)de (n, Xn41) + P (X1, X)) P (Xnv 1) Xna2) e (Xn1, X 2)
+0 Ot 1, Xm)P (Kt 2) Xm) e (X2, Xim)
< p(n, Xp41)de (O, Xn41) + P (X1, X)) P (Xns 1, Xna2) e (Xn1, Xt 2)
+0 Ot 1, Xm)P Kt 2, Xm)P (Kns2) Xn+3) e (Xn2) Xt 3)
+0 Ot 1, Xm)P Kt 2, Xm)P (a3, Xm) de (X3, Xom)
< PO Xpns1)de Ctny Xs1) + s (Timnes (%5, %)) P (e X4 (x4, X141)
+ 1275 P (37, Xm) de Gem—1, %) (5)
This implies that
de (X, Xim) < (X, Xn41)de(Xn, Xn41)
YA (M1 p(x xm)) POrsy X4 1) d e (1, Xi41)
+I15 p(xpxm) de(Xm-1,%m)
< p(en, Xp41)A"d (X0, %1)
Di= n+1(H =n+1 p(x]-, xm)) p(x;, xi+1)/1idc (%0, 1)
+1I15; n+1 p(xp xm) A (g, %1)

< p(xp, Xp41)A"d (X0, 1)

Di= n+1(H =n+1 p(xj,xm))p(xi,xi+1)/1idc(x0,x1) (6)
Let
_ \'T i i
Uy = i=0(Hj=0 p(x]-, xm)) p(xi, x;11) A (X0, x1) (7)
Consider
_ \'T i i
Vi = izo(szo P(xj' xm)) p(xi, xi11) A (xg, x1) (8)

In view of condition (2) and the ratio test, we ensure that the series ):; v; converges. Thus,

lim u,, exists. Hence, the real sequence {u,,} is Cauchy. Now, using (6), we get

n—-oo

dc(xn'xm) < dc(xo'xl)[/lnp(xnfxn+1) + (um—l - un)] (9)
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Above, we used p(x,y) = 1. Letting n,m — oo in (9), we obtain
lim d.(x,,x,) =0 (10)
n,m—-oo
Thus, the sequence {x,} is Cauchy in the complete controlled metric space (X, d.). So, there
is some x* € X.So that

lim d,(x,,x*) = 0; (12)
n—-o0o

that is, x, — x* as n — oo. Now, we will prove that x* is a fixed point of F. By (1) and

condition (iii), we get
dc(x*!Fx*) = p(x*ixn+1)dc(x*'xn+1) + p(xn+1'Fx*)dc(xn+1'Fx*)
= p(X*'xn+1)dc(x*'xn+1) + p(xn+1ﬂFx*)dc(Fxn' Fx*)

< p(x", X)) do (X", Xp41)

do(x*,Fx*)[1+d (xn,Fxn)
14+d.(xp,x*)

* ] *
+p(xp41, Fx )[V1 + v2d.(xy, x )]

= p(X*' xn+1)dc(x*: xn+1)

do(x* Fx)[1+d.(xpn,Xn+1)
1+d.(xp,x*)

+9Ctnsn, F2) 12 R ACHED] (12)

Taking the limit as n — oo and using (10), (11) and the fact that lim p(x,, x) and
n—-oo
lim p(x, x,,) exist, are finite, we obtain that
n—-oo
d.(x',Fx') < [y1 lim p(nss, Fx)| (0", Fo®) (13)

Suppose that x* # Fx*, having in mind that [Yl lim p(xn+1,Fx*)] <1,s0
n—oo

0<d,(x*Fx*) < [yl lim p(xn+1,Fx*)] d,(c*,Fo*) < d.(c",Fo") (14)
n—oo
It is a contradiction. This yields that x* = Fx™. Now, we prove the uniqueness of x*. Let y* be
another fixed point of F in X, then Fy* = y*. Now, by (1), we have
d.(x",y*) = d.(Fx*,Fy")

d.(y",Fy")[1+d (x",Fx")
1+d.(x*y*)

] * *
<y +v2d.(x%,y")

=71
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d.(y* Fy*)[1+d.(x*,Fx*)
1+d.(x*y*)

= Lt y2d. ()

d.(y"y)1+d. (x",x")]
1+d (x*,y*)

=" +y2d.(x",y")
=Y2d.(x",y") (15)
It is a contradiction. This yields that x* = y™. It completes the proof.

Example

Example 1. Consider X = {0,1,2}. Take the controlled metric d, defined as
1 11 3
d.(0,1) = E,dc(O,Z) = E,dc(l,Z) =
where p: X X X — [0, o) is symmetric such that
3
GivenF : X — X as

FO0=2and F1 =F2 =1.

Considery, = 12—1 Yo = 1—11 Then

Take x, = 0,then x; = 2,and x,, = 1, forall n > 2, we have

sup lim Pt 1. Xi42)P (X1 1,%Xm) =1<5= )l_l
m=>1 i—o0 p(xi!xi+1)

Clearly, (2) is satisfied. On the other hand, note that (1) holds for all x,y € X. All other

hypotheses of Theorem 1 are verified, and so F has a unique fixed point, which is x* = 1.
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