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Abstract 

The aim of this paper is to establish a fixed point theorem for rational type contraction in a 

complete controlled metric space. Our results extend/generalize many pre-existing results in 

literature. We also provide example which show the usefulness of these results. 
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1. Introduction and Preliminaries  

Dass and Gupta [26] established first fixed point theorem for rational contractive type 

conditions in metric space.  

Theorem 1.1 (see [26]). Let (𝑋, 𝑑) be a complete metric space, and let 𝒯: 𝑋 → 𝑋 be a self-

mapping. If there exist 𝛼, 𝛽 ∈ [0, 1) with 𝛼 + 𝛽 <  1  such that  

                                   𝑑(𝒯𝑥, 𝒯𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) + 𝛽
[1 + 𝑑(𝑥,𝒯𝑥)]𝑑(𝑦,𝒯𝑦)

1 + 𝑑(𝑥,𝑦)
                                   (1.1) 

for all 𝑥, 𝑦 ∈ 𝑋, then 𝒯 has a unique fixed point 𝑥∗ ∈  𝑋. 

Nazam et al. [27] proved a real generalization of Dass-Gupta fixed point theorem in the frame 

work of dualistic partial metric spaces. 

Czerwik [1] reintroduced a new class of generalized metric spaces, called as b-metric spaces, 

as generalizations of metric spaces. 

Definition 1 ([1]). Let 𝑋 be a nonempty set and 𝑠 ≥ 1. A function 𝑑𝑏: 𝑋 × 𝑋 ⟶ [0, ∞) is said 

to be a b -metric if for all 𝑥, 𝑦, 𝜔 ∈ 𝑋,  

(b1). 𝑑𝑏(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

(b2). 𝑑𝑏(𝑥, 𝑦) = 𝑑𝑏(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(b3). 𝑑𝑏(𝑥, 𝜔) ≤ 𝑠[𝑑𝑏(𝑥, 𝑦) + 𝑑𝑏(𝑦, 𝜔)] 
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The pair (𝑋, 𝑑𝑏) is then called a b-metric space. Subsequently, many fixed point results on such 

spaces were given (see [2–7]). 

Kamran et al. [8] initiated the concept of extended b-metric spaces.  

Definition 2. Let 𝑋 be a nonempty set and 𝑝: 𝑋 × 𝑋 ⟶ [1, ∞) be a function. A function 

𝑑ℯ: 𝑋 × 𝑋 ⟶ [0, ∞) is called an extended b -metric if for all 𝑥, 𝑦, 𝜔 ∈ 𝑋,  

(e1). 𝑑ℯ(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

(e2). 𝑑ℯ(𝑥, 𝑦) = 𝑑ℯ(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(e3). 𝑑ℯ(𝑥, 𝜔) ≤ 𝑝(𝑥, 𝜔)[𝑑ℯ(𝑥, 𝑦) + 𝑑ℯ(𝑦, 𝜔)] 

The pair(𝑋, 𝑑ℯ) is called an extended b-metric space.  

Very recently, a new kind of a generalized b-metric space was introduced by Mlaiki et al. [9].  

Definition 3 ([9]). Let 𝑋 be a nonempty set and 𝑝: 𝑋 × 𝑋 ⟶ [1, ∞) be a function. A function 

𝑑𝒸: 𝑋 × 𝑋 ⟶ [0, ∞) is called a controlled metric if for all 𝑥, 𝑦, 𝜔 ∈ 𝑋,  

(c1). 𝑑𝒸(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 

(c2). 𝑑𝒸(𝑥, 𝑦) = 𝑑𝒸(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 

(c3). 𝑑𝒸(𝑥, 𝜔) ≤ 𝑝(𝑥, 𝜔)[𝑑𝒸(𝑥, 𝑦) + 𝑑𝒸(𝑦, 𝜔)] 

The pair (𝑋, 𝑑𝒸) is called a controlled metric space (see also [10]).  

The Cauchy and convergent sequences in controlled metric type spaces are defined in this way 

Definition 4 ([9]). Let (𝑋, 𝑑𝒸) be a controlled metric space and {𝑥𝑛}𝑛≥0be a sequence in 𝐷. 

Then,  

1. The sequence {𝑥𝑛} converges to some 𝑥 in 𝑋; if for every 𝜀 > 0, there exists 𝑁 =

𝑁(𝜀) ∈ ℕ such that 𝑑𝒸(𝑥𝑛, 𝑥) < 𝜀 for all 𝑛 ≥ 𝑁. In this case, we write lim
𝑛→∞

𝑥𝑛 = 𝑥. 

2. The sequence {𝑥𝑛} is Cauchy; if for every 𝜀 > 0, there exists 𝑁 = 𝑁(𝜀) ∈ ℕ such that 

𝑑𝒸(𝑥𝑛, 𝑥𝑚) < 𝜀 for all 𝑛, 𝑚 ≥ 𝑁. 

3. The controlled metric space (𝑋, 𝑑𝒸) is called complete if every Cauchy sequence is 

convergent. 

Definition 5 ([9]). Let (𝑋, 𝑑𝒸) be a controlled metric space. Let 𝑥 ∈ 𝑋 and 𝜀 > 0. 

1. The open ball 𝐵(𝑥, 𝜀) is             

                          𝐵(𝑥, 𝜀) = {𝑦 ∈ 𝑋: 𝑑𝒸(𝑦, 𝑥) < 𝜀}. 

2. The mapping 𝐹: 𝑋 ⟶ 𝑋 is said to be continuous at 𝑥 ∈ 𝑋; if for all 𝜀 > 0, there exists 

𝛿 > 0 such that 𝐹(𝐵(𝑥, 𝜀)) ⊆ 𝐵(𝐹𝑥, 𝜀). 

The main purpose of this paper is to present some fixed point theorems for mappings involving 

rational expressions in the context of complete controlled metric spaces. Our result extends and 
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generalizes some well-known results in the literature. We also provide examples to show 

significance of the obtained results involving rational type contractive conditions.  

2 Results on Rational Type Contractions  

Theorem 2.1. Let (𝑋, 𝑑𝒸) be a complete controlled metric space. Let 𝐹: 𝑋 ⟶ 𝑋 be so that there 

are 𝛾𝑖 ∈ (0,1), ∀ 𝑖 ∈ {1,2} with 𝜆 =
𝛾2

1−𝛾1
<  1, 

                     𝑑𝒸(𝐹𝑥, 𝐹𝑦) ≤ 𝛾1
𝑑𝒸(𝑦,𝐹𝑦)[1+𝑑𝒸(𝑥,𝐹𝑥)]

1+𝑑𝒸(𝑥,𝑦)
+ 𝛾2𝑑𝒸(𝑥, 𝑦)                                                 (1) 

for all 𝑥, 𝑦 ∈ 𝑋. For 𝑥0 ∈ 𝑋, take 𝑥𝑛 = 𝐹𝑛𝑥0. Assume that 

                                        sup
𝑚≥1

lim
𝑖→∞

𝑝(𝑥𝑖+1,𝑥𝑖+2)𝑝(𝑥𝑖+1,𝑥𝑚)

𝑝(𝑥𝑖,𝑥𝑖+1)
< 𝜆−1                                                  (2) 

Suppose that lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥) and lim
𝑛→∞

𝑝(𝑥, 𝑥𝑛) exist, are finite, and 𝛾1 lim
𝑛→∞

𝑝(𝑥, 𝑥𝑛) < 1 for 

every 𝑥 ∈ 𝑋, then 𝐹 possesses a unique fixed point. 

Proof. Let 𝑥0 ∈ 𝑋 be initial point. The considered sequence {𝑥𝑛} verifies 𝑥𝑛+1 = 𝐹𝑥𝑛 for all 

𝑛 ∈ ℕ. Obviously, if there exists 𝑛0 ∈ ℕ for which 𝑥𝑛0+1 = 𝑥𝑛0
, then 𝐹𝑥𝑛0

= 𝑥𝑛0
, and the 

proof is finished. Thus, we suppose that 𝑥𝑛+1 ≠ 𝑥𝑛 for every 𝑛 ∈ ℕ. Thus, by (1), we have 

        𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) = 𝑑𝒸(𝐹𝑥𝑛−1, 𝐹𝑥𝑛) 

                              ≤ 𝛾1
𝑑𝒸(𝑥𝑛,𝐹𝑥𝑛)[1+𝑑𝒸(𝑥𝑛−1,𝐹𝑥𝑛−1)]

1+𝑑𝒸(𝑥𝑛−1,𝑥𝑛)
+ 𝛾2𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)                            

                             = 𝛾1
𝑑𝒸(𝑥𝑛,𝑥𝑛+1)[1+𝑑𝒸(𝑥𝑛−1,𝑥𝑛)]

1+𝑑𝒸(𝑥𝑛−1,𝑥𝑛)
+ 𝛾2𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)                  

                             = 𝛾1𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + 𝛾2𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) 

The last inequality gives  

                               𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤
𝛾2

1−𝛾1
𝑑𝒸(𝑥𝑛−1, 𝑥𝑛)                                               (3) 

Thus, we have 

                  𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) ≤ 𝜆𝑑𝒸(𝑥𝑛−1, 𝑥𝑛) ≤ 𝜆2𝑑𝒸(𝑥𝑛−2, 𝑥𝑛−1) ≤ ⋯ ≤ 𝜆𝑛𝑑𝒸(𝑥0, 𝑥1)           (4) 

For all 𝑛, 𝑚 ∈ ℕ and 𝑛 < 𝑚, we have 

 𝑑𝒸(𝑥𝑛, 𝑥𝑚) ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝑥𝑚)𝑑𝒸(𝑥𝑛+1, 𝑥𝑚) 
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                    ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+1, 𝑥𝑛+2)𝑑𝒸(𝑥𝑛+1, 𝑥𝑛+2) 

                    +𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑚)𝑑𝒸(𝑥𝑛+2, 𝑥𝑚) 

                    ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+1, 𝑥𝑛+2)𝑑𝒸(𝑥𝑛+1, 𝑥𝑛+2) 

                    +𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑛+3)𝑑𝒸(𝑥𝑛+2, 𝑥𝑛+3) 

                    +𝑝(𝑥𝑛+1, 𝑥𝑚)𝑝(𝑥𝑛+2, 𝑥𝑚)𝑝(𝑥𝑛+3, 𝑥𝑚)𝑑𝒸(𝑥𝑛+3, 𝑥𝑚) 

                    ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−2

𝑖=𝑛+1 𝑝(𝑥𝑖 , 𝑥𝑖+1)𝑑𝒸(𝑥𝑖, 𝑥𝑖+1) 

                    + ∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑚−1
𝑖=𝑛+1 𝑑𝒸(𝑥𝑚−1, 𝑥𝑚)                                                                        (5) 

This implies that 

                𝑑𝒸(𝑥𝑛, 𝑥𝑚) ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝑑𝒸(𝑥𝑛, 𝑥𝑛+1) 

                                  + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−2

𝑖=𝑛+1 𝑝(𝑥𝑖, 𝑥𝑖+1)𝑑𝒸(𝑥𝑖, 𝑥𝑖+1) 

                                  + ∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑚−1
𝑖=𝑛+1 𝑑𝒸(𝑥𝑚−1, 𝑥𝑚) 

                                  ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝜆𝑛𝑑𝒸(𝑥0, 𝑥1) 

                                  + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−2

𝑖=𝑛+1 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1) 

                                  + ∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑚−1
𝑖=𝑛+1 𝜆𝑚−1𝑑𝒸(𝑥0, 𝑥1) 

                                   ≤ 𝑝(𝑥𝑛, 𝑥𝑛+1)𝜆𝑛𝑑𝒸(𝑥0, 𝑥1) 

                                  + ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=𝑛+1 )𝑚−1

𝑖=𝑛+1 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1)                          (6) 

Let 

                                 𝑢𝑟 = ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=0 )𝑟

𝑖=0 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1)                               (7) 

Consider  

                                  𝜈𝑖 = ∑ (∏ 𝑝(𝑥𝑗 , 𝑥𝑚)𝑖
𝑗=0 )𝑟

𝑖=0 𝑝(𝑥𝑖, 𝑥𝑖+1)𝜆𝑖𝑑𝒸(𝑥0, 𝑥1)                              (8) 

In view of condition (2) and the ratio test, we ensure that the series ∑ 𝜈𝑖𝑖  converges. Thus, 

lim
𝑛→∞

𝑢𝑛 exists. Hence, the real sequence {𝑢𝑛} is Cauchy. Now, using (6), we get 

                            𝑑𝒸(𝑥𝑛, 𝑥𝑚) ≤ 𝑑𝒸(𝑥0, 𝑥1)[𝜆𝑛𝑝(𝑥𝑛, 𝑥𝑛+1) + (𝑢𝑚−1 − 𝑢𝑛)]                          (9) 
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Above, we used 𝑝(𝑥, 𝑦) ≥ 1. Letting 𝑛, 𝑚 ⟶ ∞ in (9), we obtain 

                                                      lim
𝑛,𝑚→∞

𝑑𝒸(𝑥𝑛, 𝑥𝑚) = 0                                                         (10) 

Thus, the sequence {𝑥𝑛} is Cauchy in the complete controlled metric space (𝑋, 𝑑𝒸). So, there 

is some 𝑥∗ ∈ 𝑋.So that  

                                                       lim
𝑛→∞

𝑑𝒸(𝑥𝑛, 𝑥∗) = 0;                                                         (11) 

 

 that is, 𝑥𝑛 ⟶ 𝑥∗ as 𝑛 ⟶ ∞. Now, we will prove that 𝑥∗ is a fixed point of 𝐹. By (1) and 

condition (iii), we get 

𝑑𝒸(𝑥∗, 𝐹𝑥∗) ≤ 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝐹𝑥∗)𝑑𝒸(𝑥𝑛+1, 𝐹𝑥∗) 

                                       = 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝐹𝑥∗)𝑑𝒸(𝐹𝑥𝑛, 𝐹𝑥∗) 

                                      ≤ 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) 

                                      +𝑝(𝑥𝑛+1, 𝐹𝑥∗) [𝛾1
𝑑𝒸(𝑥∗,𝐹𝑥∗)[1+𝑑𝒸(𝑥𝑛,𝐹𝑥𝑛)]

1+𝑑𝒸(𝑥𝑛,𝑥∗)
+ 𝛾2𝑑𝒸(𝑥𝑛, 𝑥∗)] 

                                      = 𝑝(𝑥∗, 𝑥𝑛+1)𝑑𝒸(𝑥∗, 𝑥𝑛+1) 

                                     +𝑝(𝑥𝑛+1, 𝐹𝑥∗) [𝛾1
𝑑𝒸(𝑥∗,𝐹𝑥∗)[1+𝑑𝒸(𝑥𝑛,𝑥𝑛+1)]

1+𝑑𝒸(𝑥𝑛,𝑥∗)
+ 𝛾2𝑑𝒸(𝑥𝑛, 𝑥∗)]                (12) 

Taking the limit as 𝑛 ⟶ ∞ and using (10), (11) and the fact that lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥) and 

lim
𝑛→∞

𝑝(𝑥, 𝑥𝑛) exist, are finite, we obtain that 

                               𝑑𝒸(𝑥∗, 𝐹𝑥∗) ≤ [𝛾1 lim
𝑛⟶∞ 

𝑝(𝑥𝑛+1, 𝐹𝑥∗)] 𝑑𝒸(σ∗, Fσ∗)                                 (13) 

Suppose that 𝑥∗ ≠ 𝐹𝑥∗, having in mind that [𝛾1 lim
𝑛⟶∞ 

𝑝(𝑥𝑛+1, 𝐹𝑥∗)] < 1, so 

          0 < 𝑑𝒸(𝑥∗, 𝐹𝑥∗) ≤ [𝛾1 lim
𝑛⟶∞ 

𝑝(𝑥𝑛+1, 𝐹𝑥∗)] 𝑑𝒸(σ∗, Fσ∗) < 𝑑𝒸(σ∗, Fσ∗)                       (14)   

It is a contradiction. This yields that 𝑥∗ = 𝐹𝑥∗. Now, we prove the uniqueness of 𝑥∗. Let 𝑦∗ be 

another fixed point of 𝐹 in 𝑋, then 𝐹𝑦∗ = 𝑦∗. Now, by (1), we have 

            𝑑𝒸(𝑥∗, 𝑦∗) = 𝑑𝒸(𝐹𝑥∗, 𝐹𝑦∗) 

                              ≤ 𝛾1
𝑑𝒸(𝑦∗,𝐹𝑦∗)[1+𝑑𝒸(𝑥∗,𝐹𝑥∗)]

1+𝑑𝒸(𝑥∗,𝑦∗)
+ 𝛾2𝑑𝒸(𝑥∗, 𝑦∗) 
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                              = 𝛾1
𝑑𝒸(𝑦∗,𝐹𝑦∗)[1+𝑑𝒸(𝑥∗,𝐹𝑥∗)]

1+𝑑𝒸(𝑥∗,𝑦∗)
+ 𝛾2𝑑𝒸(𝑥∗, 𝑦∗) 

                              = 𝛾1
𝑑𝒸(𝑦∗,𝑦∗)[1+𝑑𝒸(𝑥∗,𝑥∗)]

1+𝑑𝒸(𝑥∗,𝑦∗)
+ 𝛾2𝑑𝒸(𝑥∗, 𝑦∗) 

                              = 𝛾2𝑑𝒸(𝑥∗, 𝑦∗)                                                                                           (15) 

It is a contradiction. This yields that 𝑥∗ =  𝑦∗. It completes the proof. 

Example  

Example 1. Consider 𝑋 = {0,1,2}. Take the controlled metric 𝑑𝒸 defined as  

                                  𝑑𝒸(0,1) =  
1

2
, 𝑑𝒸(0,2) =  

11

20
, 𝑑𝒸(1,2) =  

3

2
,                                                

where 𝑝: 𝑋 × 𝑋 ⟶ [0, ∞) is symmetric such that 

                      𝑝(0,0) = 𝑝(1,1) = 𝑝(2,2) = 𝑝(1,2) = 1, 𝑝(0,2) = 2, 𝑝(0,1) =
3

2
  

Given 𝐹 ∶ 𝑋 ⟶ 𝑋 as 

                                               𝐹0 = 2 and 𝐹1 = 𝐹2 = 1. 

Considerγ1 =
2

11
, γ2 =

1

11
. Then  

𝜆 =
𝛾2

1 − 𝛾1
=

2
11

1 −
1

11

=
1

5
<  1, 

Take 𝑥0 = 0, then 𝑥1 = 2, and 𝑥𝑛 = 1, for all 𝑛 ≥  2, we have           

                                   sup
𝑚≥1

lim
𝑖→∞

𝑝(𝑥𝑖+1,𝑥𝑖+2)𝑝(𝑥𝑖+1,𝑥𝑚)

𝑝(𝑥𝑖,𝑥𝑖+1)
= 1 < 5 = 𝜆−1 

Clearly, (2) is satisfied. On the other hand, note that (1) holds for all 𝑥, 𝑦 ∈ 𝑋. All other 

hypotheses of Theorem 1 are verified, and so 𝐹 has a unique fixed point, which is 𝑥∗ =  1.    
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