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Abstract
Sediment yield is important for maintaining soil health, reservoir sustainability, environ-
mental pollution, and conservation of natural resources. The main aim of the present work
is to develop four machine learning models, artificial neural networks (ANNs), radial
basis function (RBF), support vector machine (SVM) and multiple model (MM)-ANNs
for forecasting daily sediment yield. These models were applied to the Shakkar and
Manot watersheds covering 25 years (1990–2015) and 10 years (2000–2010) of rainfall
and discharge data, respectively. Results showed that the MM-ANNs model satisfactorily
predicted sediment yield and outperformed the other models providing the highest
correlation coefficient (0.921, 0.883) and Nash-Sutcliffe efficiency (0.744, 0.763) and
the lowest relative absolute error (0.360, 0.344) and root mean square error (23,609.5,
269,671.5) for the Shakkar and Manot during the test period, respectively. Hence, the
MM-ANNs model can be successfully used for sediment prediction.

Keywords Machine learningmodels . Sediment yield . ANN . RBF . SVM .Multiplemodel

1 Introduction

Watershed sediment load is an ecological hazard and its estimation is needed for developing
measures for environmental protection, sustainability of reservoirs and hydropower generation,
avoiding blockage of water supply systems, flood control, and maintaining soil fertility (Lin
et al. 2006; Xu et al. 2012; Men et al. 2012).

In many waterways, sediment is transported in suspension and estimation of suspended
sediment (SS) is basic for designing channels, dams, and culverts (Targhi et al. 2017).
Awareness of potential sediment loads is important for programmes for water resource
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management and environmental protection (Melesse et al. 2011). In fact, runoff and sediment
yield models are regarded as the core components of the watershed planning and management
tasks implemented through the concepts used for decision support by various resource man-
agers. Soil erosion, which is directly related to issues with transporting sediments, continues to
be a major ecological concern worldwide. Continuous monitoring of soil erosion and transport
of sediments, however, can be a repetitive and highly demanding task; hence detailed models
for forecasting these important decision-making parameters (Gajbhiye et al. 2014, 2015).

In the last decades, artificial intelligence techniques have been applied in water resources
management, especially for modelling processes with limited knowledge (Yoon et al. 2011;
Chau and Wu 2010; Hsu et al. 1995). Such techniques include artificial neural networks
(ANNs), and support vector machine (SVM). Neural networks are particularly useful for
forecasting as they handle hydrological time series nonlinearity and uncertainty when model-
ing input vectors (Peng et al. 2017; Khan et al. 2005; Dhanya and Kumar 2010). Hydrologists
have used ANNs since the 1990’s. Over the past two decades many studies have been
conducted on the efficiency of ANNs in hydrological process modeling.

Artificial neural networks have been applied in almost all branches of science. ANNs are well
known for their ability to model nonlinear systems, such as precipitation-runoff, stream flow, and
time series analysis (ASCE 2000). Specific applications are rainfall-runoff modeling (Chen et al.
2013; Tfwala et al. 2013; Nourani et al. 2012), groundwater management and forecasting (Lee
et al. 2012; Gorelick and Zheng 2015; Nourani et al. 2008; Adamowski and Chan 2011),
streamflow forecasting (Anctil et al. 2004; Besaw et al. 2010; Meshram et al. 2019a), rainfall
forecasting (Chiang et al. 2004; Nasseri et al. 2008a, 2008b; Tao et al. 2018;Mirabbasi et al. 2019),
suspended sediment prediction (Alp and Cigizoglu 2007; Kisi and Shiri 2012; Meshram et al.
2019b), andwater quality management (Palani et al. 2008; Faruk 2010). Smith and Eli (1995) used
an ANN back propagationmodel to estimate the peak discharge and the peak time resulting from a
single pattern of rainfall. Jain and Indurthy (2003) applied ANN models for the predictions of
event-based discharge and compared them to other conceptual and linear model systems. Sarkar
and Kumar (2012) used ANNmodels for a simulation of the event-based rainfall runoff. Iraji et al.
(2020) predicting reservoirs volume reduction using Artificial Neural Network (ANN). Some
studies focusing on ANN-event based sediment yield modelling and concentration of sediments
have been reported (Tayfur and Singh 2006; Rai and Mathur 2007; Singh et al. 2017).

The ANN will learn from the examples the careful behavior between input and output without
physical interference (Wei et al. 2012; Ramezani et al. 2014). Alp and Cigizoglu (2007) contrasted
the method of feed-forward back-propagation (FFBP) and the radial base functions (RBF) for
regular sediment prediction. A soft computational technique was used by Ab. Ab Ghani et al.
(2011) to predict sediment loads in three Malaysian rivers. The propagated feedback (schemes)
ANNs architecture was used without any restriction to an extensive database compiled from
measurements in different rivers in Langat, Muda, Kurau. Chang et al. (2012) assessed the
efficiency of three soft computing techniques, namely neural feed forward neural network (FFNN),
the adaptive neuro-fuzzy inference system (ANFIS) and gene-expression programming (GEP).
Buyukyildiz and Kumcu (2017) used ANFIS, SVM, and ANN models to assess the suspended
sediment load. Sharghi et al. (2018) indicated the superiority of emotional ANN (EANN) over
FFNN. Nourani et al. (2019) comparedWavelet-M5model with individual ANN andM5models.

SVM is one of the machine learning methods utilized in hydrology and has proved to be an
alternative to ANNs. SVM is used for hydrologic forecasts, such as precipitation (Behzad et al.
2009;Okkan and Serbes 2012), stream flows (Asefa et al. 2006;Liu et al. 2014), sediment
(Misra et al. 2009; Azamathulla et al. 2010; Ebtehaj et al. 2016), and groundwater fluctuations
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(Shiri et al. 2013; Barzegar et al. 2017) and has been found to perform better than ANNs.Yoon
et al. (2011) found that prediction error of SVM for forecasting flood stage was less than the
ANN models. Lin and Jhong (2015) developed the application of a multi-objective genetic
algorithm SVM for hourly rainfall prediction in the Tsengwen River Basin, Taiwan. In
addition to the above studies, Tayfur and Singh (2006) and Hung et al. (2009) studied
the SVM model and all of them demonstrated the reliability of the model in terms of
performance competencies.The main aim of the present paper is to investigate the ability of
multiple model feed forward ANNs (MM-FNN) model and compare it with the single feed
forward ANNs, radial basis function and SVM for daily sediment yield prediction. To the
best knowledge of the writers, the capability of MM-FNN model which combines the
accuracy of FFNNs, RBF and SVM methods has not been previously investigated for
suspended sediment prediction.

The remaining part of the paper is presented as below. 2nd section briefly defines different
types of prediction methods (ANNs, RBF, SVM, MM-ANNs). The study area and utilized
data sets are described in the 3rd section. 4th section gives the utilized error measures.
Determination of inputs, model development and results of models in sediment prediction
are provided in the 5th section. 6th section givesthe conclusions at last.

2 Sediment Prediction Using Hybrid Learning Architecture

2.1 Artificial Neural Networks (ANNs)

The ANN architecture comprises three layers, i.e., input, output, and hidden layers as
presented in Fig. 1. It can be given as below:

γ j ¼ f ∑
i
ωijX ij

� �
ð1Þ

Fig. 1 A schematic structure of FNN type of ANNs
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where γj, f(.), X ijand ωijare the output of node j, the transfer function, the signal of input from
ith node in the previous layer to jth node and weight between jth node and ith node, respectively.
In this study, feed forward ANNs (FNN) was utilized by employing Levenberg-Marquardt
training algorithm.

2.2 Radial Basis Function (RBF)

RBF has been brought into ANNs due to their privately tuned reaction saw in organic neurons.
Their premise lies in the interpolation of multivariate capacities. A correct RBF mapping goes
through each datum point. A distinctive number of hidden layer neurons and spread constants
were investigated in this examination.

2.3 Support Vector Machine (SVM)

SVM devises a computationally proficient method for learning and isolating hyper planes in a
high dimensional component space (Vapnik 1995). SVM builds an N dimensional hyper-plane
that isolates information into two classifications. SVM models are identified with neural
systems. An SVM accomplishes higher arrangement rates in contrast with other characteriza-
tion strategies. There are two types of SVM: straight SVM and non-direct SVM (Vapnik
1999). The straight SVM was utilized here.

SVM is a cutting edge classifier and can speculate direct characterization limits in a multi
dimensional space (Cortes and Vapnik 1995; Cortes and Vapnik 1998; Vapnik 1998). SVM is
configured by hyperplane (Cortes and Vapnik 1995) that implies the choice limits named
“support vectors” (Fig. 2). The forecasting is done in light of these choice limits. In SVM,
exactness is achieved in the estimation of class expectation concerning another informational
index which is shaped using an ideal choice limit from the preparation information. Subse-
quently, the exactness rate is broken down by getting class precision (Cortes and Vapnik
1995). A basic interpretation of the SVM calculation is given afterwards. Given a training

set D ¼ xi γif gni¼1with input vectors xi ¼ xi 1ð Þ;……::xi nð Þ� �T
ϵℝn and target labels γi⋳ {−1, +

Fig. 2 A schematic representation of SVM
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1} the SVM classifier, as indicated by Vapnik’s unique plan, fulfills the accompanying
conditions

wTØ xið Þ þ β≥ þ 1 if γi ¼ þ1 ð2Þ

wTØ xið Þ þ β≤−1 if γi ¼ −1 ð3Þ
which is equivalent to

γi w
TØ xið Þ þ β

� �
≥1 i ¼ 1; 2; 3……::n

where w, β are the weight vector and the bias, respectively. Nonlinear function
Ø :ð Þ : ℝ2→ℝnk maps info or estimation space to a high-dimensional, and potentially unend-
ing dimensional, highlight space (Min and Lee 2005).

Application is led with a vector which can be part direct as 1 or - 1 with a class portrayal in
view of Eqs. 2 and 3 (Cortes and Vapnik 1998). The hyperplanes of specimens are not
discovered by only adjoining the line. For a superior speculation they should persevere inside
a specific separation. The separation of the closest specimens on the two sides of the limit is
the edge which ought to be as high as feasible for an ideal speculation (Cortes and Vapnik
1998).

2.4 Multiple Model (MM-FNN)

The proposed multiple model (MM) architecture is made up of two phases (Fig. 3). In the
principal layer, an artificial neural system is utilized as a classifier, which recognizes the input
space into various component groups. The second layer comprises SVM, RBF and FNN
which function as regressors. The proposed multiple model inputs [i.e., SVM output (Model-
1), RBF output (Model-2), FNN output (Model-3)] were selected. In addition, the proposed
multiple model cannot just lessen the CPU time caused by exorbitant training data yet to
additionally enhance the expectation exactness.

Fig. 3 Illustration of the proposed multiple model-FNN for sediment yield forecast
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3 Study Area and Data Collection

Narmada basin has a region of 98,796 km2 which is about 3% of the aggregate land zone of the
nation with the most extreme width and length of 161 and 923 km. It is situated in east
longitudes from 72°38′ to 81°43′ and north latitudes from 21°27′ to 23°37′. Narmada is the
biggest west streaming waterway of peninsular India. It ascends from Maikala close to
Amarkantak in Anuppur area of Madhya Pradesh, at a height of around 1057 m. The aggregate
length of the stream is 1312 km and for the initial 1079 km it streams in Madhya Pradesh. The
significant piece of basin is secured with agri-business accountingfor 56.90%. Water bodies
cover 2.95% of the aggregate basin region.

For this study, two watersheds were chosen considering the available data of rainfall, runoff
and sediment. A brief description of these watersheds is given as follows:

Shakkar watershed (2220 km2) in Narsinghpur district and Manot watershed (4884 km2) in
Mandla district of Madhya Pradesh, India. Figure 4 shows these watersheds.

Daily data utilized in the present study cover rainfall (mm)-runoff (mm) and suspended
sediment (MT) for the period of 1/1/1990–31/12/2015 for Shakkar watershed and 1/1/2000–
31/12/2009 for Manot watershed. Out of the total data of rainfall, runoff, and sediment, 80% of
data were utilized for calibration of the models and the 20% was used for model testing.
Figure 5 illustrates the measured data of Shakkar and Manot sites. Table 1 sums up their
statistical parameters.

Fig. 4 Location map of the study area
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4 Experimental Details

4.1 Model Development

Four machine learning models, FNN, RBF, SVM and MM-FNN, were implemented and assessed
in sediment yield prediction utilizing daily data of rainfall-runoff and sediment data from 2 stations
situated in the Narmada Basin. Before model implementation, data set was split in two subsets,
training (80%) and test (20%) and program codeswere employed viaMATLAB for simulations. As
provided in Tables 2, 3 input combinationswere employed (i.e., rainfall was used asModel-1, runoff
was used as Model-2, rainfall and runoff were used as Model-3).

To develop an optimal SVMmodel, the penalty term magnitude, the error margin deviation
or width, and parameters of Gaussian radial basis function were determined for the SVM
models and the optimal values of the target parameters were chosen. To obtain the optimal FNN
models, data were normalized first and the models were calibrated by the LM method and

Fig. 5 Time series of measureddata utilized for (a): Shakkar Station and (b):Manot Station. SY: Sediment yield

Table 1 The statistical properties of utilized data

Station Data Period Count Minimum Maximum Median Mean Standard
deviation

Shakkar Rainfall
(mm)

Jan 1990-Dec
2015

312 0.0 983.0 0.0 87.6 163.1

Runoff
(mm)

0.0 1038.2 5.5 56.4 117.1

SY (MT) 0.0 3,682,721.8 11.2 125,989.3 426,968.9
Manot Rainfall

(mm)
Jan 2000-Dec

2009
120 0.0 1824.4 7.3 204.5 372.3

Runoff
(mm)

1.9 4441.4 72.9 465.8 750.6

SY (MT) 4.4 404,047.7 682.8 42,559.2 85,651.3

SY- Sediment Yield, MT- Metric Tonne
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“tansig” and “linear” activation functions were set for the hidden and output layer, respectively.
The quantity of hidden layer neurons was set to 1 first and then increased till the best model was
obtained. To construct the MM-FNN model, the SVM, RBF, FNN outputs were used as input.

4.2 Evaluation Criteria

In this paper, four error measures were utilized to assess the quality of prediction models:
Correlation Coefficient (CC), Relative Absolute Error (RAE), Root Mean Square Error
(RMSE), and Nash-Sutcliffe Efficiency (NSE).

CC ¼ n ∑PQð Þ− ∑Pð Þ ∑Qð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑P2− ∑Pð Þ2
h i

n∑Q2− ∑Qð Þ2
h ir ð4Þ

RAE ¼
∑
n

i¼1
Pi−Qij j

∑
n

i¼1
Q−Qi

			 			 ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Pi−Qið Þ2

s
ð6Þ

Table 2 Input combinations used for prediction of suspended sediment

No. Input combinations Models

FNN RBF SVM

1 Rainfall FNN1 RBF1 SVM1
2 Runoff FNN2 RBF2 SVM2
3 Rainfall, Runoff FNN3 RBF3 SVM3

Table 3 Comparative performance of FNN models

Station Model Model structure Training Testing

CC RAE RMSE
(MT)

NSE CC RAE RMSE
(MT)

NSE

Shakkar FNN1 1–15-1 0.695 0.907 286,464.7 0.443 0.348 1.064 551,019.8 −0.070
FNN2 1–17-1 0.950 0.213 119,382.2 0.903 0.815 0.768 494,025.8 0.140
FNN3 2–2-1 0.877 0.386 184,332.8 0.769 0.870 0.530 288,039.9 0.708

Manot FNN1 1–1-1 0.832 0.398 47,848.9 0.691 0.780 0.479 55,038.1 0.556
FNN2 1–2-1 0.860 0.463 45,488.5 0.720 0.572 0.630 68,784.4 0.306
FNN3 2–4-1 0.843 0.421 47,024.0 0.701 0.782 0.465 54,176.7 0.570

Meshram S.G. et al.



NSE ¼ 1−
∑
N

i¼1
Qi−Pið Þ2

∑
N

i¼1
Qi−Q


 �2

2
664

3
775

								

								
;−∞≤NSE≤1 ð7Þ

Where n is the total quantity of data; Qiand Pi are the measured and predicted data of sediment,

respectively; and Q is the mean measured data.

5 Results and Discussion

The first step in building a prediction model, such as ANN (RBF/FNN) and SVM, MM-FNN,
is the determination of input variables or factors. There are no set guidelines in the choice of
input factors for building these models (Bowden et al. 2005; Affandi andWatanabe 2007; Firat
2008; Wang et al. 2009). In the current work, three models were implemented to search the
model accuracies with respect to different input combinations. These are summed up in
Table 2.

5.1 Sediment Yield Estimation with ANN

The two most prevalent neural network designs, feed forward ANNs (FNN) and radial basis
function (RBF), were used for regression purposes. In the current work, three models (M1–
M3) having different inputs were calibrated and evaluated using ANNs (FNN and RBF)
models. The quantity of hidden nodes was gradually increased from 1 to 10 and LM algorithm
was applied via the MATLAB ANN toolbox for FNN simulation.

Table 3 illustrates the accuracy of FNN models with distinct quantity of hidden
neurons. The execution of FNN shifted as per the quantity of hidden neuron. In the
training stage of the Shakkar Station, the FNN2 model with seventeen hidden neurons
provided the best CC, RAE, RMSE and NSE while the FNN3 obtained the best CC, RAE,
RMSE and NSE values (0.870, 0.530, 288,039.9 and 0.708, respectively) in the testing
stage. In the training stage of the Manot Station, also FNN2 (2 hidden neurons) gave the
best CC and NSE values (0.860 and 0.720, respectively), and FNN1 (one hidden neuron)
the best RAE (0.398), while FNN3 (4 hidden neurons) provided the best RMSE
(47024).The FNN3 provided the best CC, RAE, RMSE and NSE statistics (0.782,
0.465, 54,176.7 and 0.570, respectively) in the test stage.

According to the performance statistics in the test stage, the FNN3 (2–2-1) and FNN3 (2–4-
1) models were chosen for Shakkar and Manot (Fig. 6).

Table 4 displays the results of RBF models comprising various quantities of hidden neurons
(between 1 and 100). In the training and test stages of the Shakkar Station, the RBF3 model
having72 hidden nodes gave the best CC, RAE, RMSE and NSE (0.913, 0.320, 156,514.3,
0.834 for training and 0.895, 0.556, 304,028.5, 0.674 for testing, respectively). In the training
and testing phases, the RBF1 with 19 hidden neurons obtained the best CC, RAE, RMSE and
NSE values (0.859, 0.327, 44,046.9, 0.738 for training and 0.578, 0.600, 74,219.1, 0.193 for
testing, respectively).

According to the performance statistics in the test stage, the RBF3 (3–72–1) andRBF1 (1–19-1)
models were chosen for the Shakkar and Manot watersheds, respectively.
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5.2 Sediment Yield Prediction with SVM

Like ANN, the data utilized for SVM simulation were the data at time t. The C, ε and γ
parameters were pre determined for SVM. Table 5 sums up the accuracy of the SVM for the
training and test stages of Shakkar and Manot stations. It is observed that in the training stage

Table 4 Comparative performance of RBF models

Station Model Model parameters Training Testing

CC RAE RMSE
(MT)

NSE CC RAE RMSE
(MT)

NSE

Shakkar RBF1 HN: 49; r: 78.1
BF: Gaussian

0.689 0.564 278,197.5 0.475 0.264 1.105 589,735.7 −0.226

RBF2 HN: 39; r: 77.8
BF: Gaussian

0.885 0.350 179,210.7 0.782 0.764 0.969 499,359.3 0.121

RBF3 HN: 72; r: 55.8
BF: Gaussian

0.913 0.320 156,514.3 0.834 0.895 0.556 304,028.5 0.674

Manot RBF1 HN: 19; r: 59
BF: Gaussian

0.859 0.327 44,046.9 0.738 0.578 0.600 74,219.1 0.193

RBF2 HN: 21; r: 8.8
BF: Gaussian

0.885 0.311 39,986.1 0.784 0.509 0.658 76,120.9 0.151

RBF3 HN: 78; r: 62
BF: Gaussian

0.918 0.264 34,107.6 0.843 0.539 0.666 84,458.1 −0.046

HN: hidden neurons, r: spread value, BF: basic function
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Fig. 6 Sediment yield of the testing phase by FNN, RBF, SVM, and MM-FNN, and scatter diagrams at 2
gauging stations (a): Shakkar and (b): Manot
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of Shakkar, SVM2 had the lowest RMSE and RAE, and the highest CC and NSE. Neverthe-
less, SVM3 got the best CC, RAE, RMSE and NSE in the test stage. For the Manot Station,
the SVM3 had the best values of CC, RAE, RMSE and NSE in the training and test stages
(Fig. 6).

5.3 Comparison of Prediction Models

We investigated the ability of the MM-FNN model for sediment yield prediction and com-
pared with FNN, RBF and SVM models. The accuracies of the FFBP, RBF, SVM and MM-
FNN models were compared using CC, RAE, RMSE and NSE. Table 6 presents the training
and test results of the Shakkar and Manot stations.

In Table 6, it is shown that MM-FNN model acquired the best CC, RAE, RMSE and NSE
in the training and testing stages for the both stations. The new model considerably improved
the accuracy of FNN, RBF and SVMmodels with respect to RMSE (NSE) by 47% (7%), 54%
(13%) and 121% (47%) for Shakkar and by 35% (35%), 74% (85%) and 2% (2) for Manot in

Table 5 Comparative performance of SVM models

Station Model Model parameters Training Testing

CC RAE RMSE
(MT)

NSE CC RAE RMSE
(MT)

NSE

Shakkar SVM1 C: 1437.42, ε: 0.03,
γ: 86.75

0.664 0.596 287,663.3 0.438 0.247 1.109 566,245.6 −0.130

SVM2 C: 3.71, ε: 0.01, γ:
3.12

0.913 0.290 157,562.6 0.832 0.783 0.973 515,649.8 0.063

SVM3 C: 3.05, ε: 0.01, γ:
4.67

0.901 0.322 169,621.5 0.804 0.803 0.794 395,821.9 0.448

Manot SVM1 C: 2.14, ε: 0.06, γ:
1.09

0.857 0.331 44,508.1 0.732 0.631 0.544 68,403.5 0.314

SVM2 C: 5.61, ε: 0.06, γ:
0.61

0.883 0.311 40,471.5 0.779 0.526 0.654 74,506.8 0.186

SVM3 C:381.79,
ε:1.94e+09, γ:
3.37

0.901 0.265 37,409.2 0.811 0.937 0.339 40,952.6 0.754

C: Magnitude of penalty term, ε: width/deviation of the error margin, γ: Gaussian radial basis function parameter

Table 6 Comparative performance of optimal models

Station Model Training Testing

CC RAE RMSE
(MT)

NSE CC RAE RMSE
(MT)

NSE

Shakkar FNN 0.877 0.386 184,332.8 0.769 0.870 0.530 288,039.9 0.708
RBF 0.913 0.320 156,514.3 0.834 0.895 0.556 304,028.5 0.674
SVM 0.901 0.322 169,621.5 0.804 0.803 0.794 395,821.9 0.448
MM-FNN (3–16-1) 0.909 0.305 160,494.5 0.825 0.921 0.360 269,671.8 0.744

Manot FNN 0.843 0.421 47,024.0 0.701 0.782 0.465 54,176.7 0.570
RBF 0.859 0.327 44,046.9 0.738 0.578 0.600 74,219.1 0.193
SVM 0.901 0.265 37,409.2 0.811 0.937 0.339 40,952.6 0.754
MM-FNN (3–18-1) 0.913 0.190 35,519.7 0.830 0.883 0.344 40,226.5 0.763
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the testing stage. Results indicated that the MM-FNN model might provide an alternative to
the FFBP, RBF and SVM models for predicting suspended sediment.

6 Conclusion

In this paper, the applicability of new multi-mode neural network, MM-FNN, model was
investigated and compared with the performances of FNN, RBF and SVM in predicting
sediment yield. The MM-FNN model was found to provide better prediction results than did
other models in two stations. The MM-FNN model provided the highest CC and NSE and the
lowest RAE and RMSE in both training and testing data sets. By implementing new model
scheme, improvements obtained for the single models (FNN, RBF and SVM) with respect to
RMSE and NSE were 47% (7%), 54% (13%) and 121% (47%) for the Shakkar Station and by
35% (35%), 74% (85%) and 2% (2) for the Manot Station in the testing stage, respectively.
Thus, MM-FNNmodels are recommended as an alternative model to the FNN, RBF and SVM
in predicting sediment yield.
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