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Abstract
Soil erosion is widespread with spatio-temporal variability and is central to the determina-
tion of sediment yield, which is vital to proper management of watersheds. We propose a 
relation between the Curve Number (SCS 1956) and the Sediment Yield Index (SYI) using 
cubic, quadratic and quintic splines in this research. Using Mohgaon watershed (part of 
Narmada Basin) data, the relation between observed and computed SYI is found to have a 
coefficient of determination (R2) value of 0.87, 0.40 and 0.10 corresponding cubic, quad-
ratic and quintic splines suggesting that such a relation can be used to determine SYI from 
the available CN value. The cubic spline was found to be the best method with respect 
to Absolute Prediction Error (APE), Integral Square Error (ISE), Coefficient of Efficiency 
(CE), Coefficient of Correlation (CC) and degree of agreement (d) (i.e., APE = 1.35, 
ISE = 3.09, CE = 62.08, CC = 79.60 and d = 0.99). The quintic spline (with an average 
value of APE = 19.59, ISE = 7.84, CE =  − 165.73, CC = 19.30 and d = 0.26) and the quad-
ratic spline (with an average value of APE = 20.99, ISE = 8.92, CE =  − 199.90, CC = 8.95 
and d = 0.15) ranked as the 2nd and the 3rd best methods, respectively.
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1  Introduction

Soil erosion is a significant issue in virtually all countries of the world. Almost 1964.4 M ha 
of land is affected by human-instigated debasement (Meshram et al. 2017; Meshram and 
Meshram 2020). Of this amount, about 1903  M  ha land is degraded by soil erosion by 
water and remainder by the wind erosion. In India, of 329 M ha land, around 167 M ha is 
influenced by water and wind erosion. The land influenced by water erosion is evaluated to 
be around 113.3 M ha (Ministry of Agriculture 1972; Meshram et al. 2019). These figures 
indicate that land management needs urgent attention.

Proper watershed management programs require quantitative values of soil loss. The 
soil loss varies from one watershed to another. It is desirable to identify critical watersheds, 
prioritize watersheds and then undertake needed measures for soil and water protection 
(Meshram and Meshram 2020).

Sediment yield from a catchment is one of the principal bases for the prioritization of 
watersheds prone to soil disintegration (Brahim et  al. 2020). This requires continuously 
observing sediment sample at the watershed outlet. However, continuous measurements 
of soil loss are not available for most watersheds, especially in developing countries, such 
as India (Meshram et  al. 2020). Since soil loss measurements are expensive, watersheds 
can be prioritized and measurements can be undertaken for developing prediction models 
which can be applied to un-gauged watersheds.

The watershed selected for investigation gets > 80% of the precipitation in the rainy 
season (June–September) (Meshram et al. 2018). Due to undulated topography, a signifi-
cant part of the water streams out rapidly and results in soil erosion and poorly recharges 
groundwater aquifers. The light finished and penetrable soils are easily erodible and hold 
restricted amounts of water in the root zone. For the most part precipitation ends during 
the last week of September or the first week of October, and accordingly crop flowering 
and development suffer significantly because of low moisture and hence yield is affected 
(Singh et al. 2020).

Sediment yield and runoff data are required for watershed protection of soil and water 
assets. The Curve Number (CN) speaks to the overflow potential and shows spatial and 
worldly variety. The Soil Conservation Service-Curve Number (SCS-CN) technique (1954) 
process the surface runoff for the certain precipitation events from small watersheds (SCS 
1956, 1985), which is required for calculation of soil disintegration/erosion. The watershed 
susceptibility of soil disintegration and silt yield is displayed by utilizing the idea of SYI 
of All India Soil &Land Use utilizing the information of Mohgaon Watershed (India). It is 
known that silt to a large degree depends upon precipitation-runoff and watershed condi-
tions characterized by runoff CN. The greater the runoff CN, the greater will be the sedi-
ment yield in agrarian watersheds and the other way around. Since CN speaks to the runoff 
delivering capability of a watershed and sediment yield index, the capability of residue 
yield, it is very legitimate that these two parameters, i.e., sediment yield index and curve 
number, should show some connection among them (Gajbhiye et al. 2014 2015; Meshram 
and Powar 2017a, b; Meshram et al. 2017).

Spline functions which are piecewise polynomial functions are used nowadays. They 
are suited for the estimation of experimental data or design curve experiments (Rice 1969). 
Piecewise polynomials of grade n are defined by the first n − 1 derivatives which appear 
in the focus of the joining. The quantity and degrees of the equation parts and the number 
and location of the nodes may alter in distinct situations. A big amount of research have 
been performed at regional and national level on the use of cubic, quadratic and quintic 
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spline (Herriot and Reinsch 1976; Yang and Wang 1994; Holnicki 1996; Kumar and Sriv-
astava 2009; Christara et al. 2010; Tianxiang and Hongxia 2012; Han 2015; Wu and Zhang 
2014; Alayed et  al. 2016; Tariq and Akram 2016; Luo et  al. 2016; Wong 2017; Lang 
2017; Moghaddam et al. 2017; Li and Wong 2019; Gülüm et al. 2019; Khalid et al. 2019; 
Psiaki et al. 2019; Černá and Finěk 2020; Moghaddam et al. 2021). Some researchers have 
applied contemporary modeling tools in water resources engineering (Wu and Chau 2006; 
Chau 2007; Wang et al. 2014; Taormina et al. 2015; Gholami et al. 2015; Chen et al. 2015).

Spline functions have been implemented to measure approximately the SYI value for a 
given CN that can contribute significantly to the watershed management sector. Since the 
spline approximation theory states that the best approximants are cubic splines. Therefore, 
we applied these splines and computed splines of various orders and found that, relative to 
other quadratic and quintic splines, the cubic splines gave approximations very similar to 
the actual values. Although the cubic spline is most frequently used in spline feature esti-
mates, it is also considered suitable for quadratic spline. The spline function is increasingly 
used in medicine, agriculture, engineering and various sciences, but has experienced lim-
ited use in soil erosion. Therefore, the purpose of this research was to apply three methods 
of splines; cubic, quadratic and quintic, for the index of computational sediment yield.

2 � Material and methods

2.1 � Study area

The Burhner River is the main tributary of Mohgaon Watershed which ascends in the 
Maikala range in the Mandla district of Madhya Pradesh (India) with elevation of around 
900 m. Mohgaon Watershed with an area of 3978 km2 lies between latitude of 22°32′N 
and longitude of 81°22′E (Fig. 1). The weather of the basin is delegated sub-tropical and 
sub humid with a normal yearly precipitation of 1,547 mm. The watershed region contains 
both smooth and rippling lands secured with wood and urban lands. Soils are generally red 
and silty clay loam. Cultivated and forest land share almost 53 and 12% of the catchment 
region, correspondingly (Gajbhiye et al. 2014). For model development, we used the data 
of SYI and CN from the previous study of Meshram and Powar (2017a, b). The soil erosion 
problem in the Mohgaon watershed shown in Fig. 2.

2.2 � Importance and reference of spline functions in approximation

At the early stage, the approximation process was quite rough, as when two values were 
available (e.g., the SYI) which corresponded to two separate domain points (representing 
the CN), the approximate value in between two domain CNs used to be a continuous func-
tion obtained through the calculation of an average two values.

The polynomials were also found to be the best approximate feature because they can be 
measured readily and distinguished. The easy principle of matrix interpolation on which 
numerical assessment is practically based can be discovered in numerical assessment lit-
erature (Davis 1953). Later Weierstrass in 1885 established a very strong result supporting 
polynomials as good approximates for continuous functions. But the question is whether 
the approximate polynomial Pn(x) converges always or not?

The answer is that Pn(x) may not be convergent in general. In early nineteen cen-
tury Me’ray and later Runge looked at the meromorphic function f(x) = 1/1 + x2 and 
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investigated that if Pn(x) interpolate to f at n + 1 equidistant point of the interval |x| ≤ 5, 
Pn converges to f only for the interval |x| ≤ 3.63 and diverges outside this interval. The 
above assertion and many such observations of non-convergence lead to think mathema-
tician for some alternate approximates. The progress of software science makes it easy 
to store features on the desktop and they have good mathematical characteristics like:

Fig. 1   Location map of the study area

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



2705Natural Hazards (2021) 108:2701–2719	

1 3

1.	 Strong approximation power
2.	 Computational convenience
3.	 Sufficient degree of smoothness

Play a significant of one such major approach could be traced back to the pioneering 
work of Schoenberg (1968). The fundamental concept is to apply piecewise polynomial 
(PP) functions that are called Splines with a certain degree of smoothness at the joints. One 
obvious benefit of using PP functions rather than variables is that a greater degree of flex-
ible is accomplished by splines without charging for further computing complexities that 
are related to higher-grade variables. Spline is a French word; their significance is an archi-
tectural device of tiny bends used for the layout of railway tracks by engineers.

2.3 � Primilaries of splines

In order to develop a relationship between SYI and CN, the proposed approach is outlined 
as being taken after: (1) Estimation of sub-watershed wise SYI and CN, (2) CN of all sub 
watersheds is organized in increasing order of CN, which will give the interval of CN for 
spline development, (3) As in our investigation, 15 sub-watersheds are there, so eight (2, 
4, 8, 9, 10, 11, 12, 15) were chosen for the development of splines and the remaining were 
utilized for the approval of splines, (4) From the CN value and spline coefficients, compute 
the Sediment Yield Index which corresponds to the interval of CN. These are the computed 
SYI values, (5) The computed SYI (SYIc) was compared with the observed SYI (SYIo) 
which was derived from the AISLUS method. In addition, compiling the soil loss map 
according to the following methodological flowchart (Fig. 3).

Fig. 2   Soil erosion problem in the Mohgaon (MG) watershed
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The computation of SYI corresponding to any region is based on many factors like; slope, 
watershed area, soil type and land use land cover information. These data have been extracted 
from the satellite information, soil maps and SRTM map with the help of GIS environment. It 
is well known that the computation of SYI is quite tedious. Hence considering the curve num-
ber (CN) in the mesh of domain the corresponding quadratic, quintic and cubic spline approxi-
mation has been obtained for SYI. In the literature of approximation theory (De Boor 1978), it 
has been mentioned that the cubic spline are the best approximants. We have computed quad-
ratic, quintic and cubic spline for the Mohgaon Watershed data and concluded practically that 
cubic splines are the best approximants. The main objective of this comparison to make sure 
that in case of watershed management also, the cubic approximants behave nicely and are very 
close to the actual values.

2.3.1 � Cubic spline (Gülüm et al. 2019)

The [α, β] interval on the actual route and outline a divider of it as follows:

The zi ’s are the nodal points and for i = 1, 2,… , n at every zi , �
(
zi
)
 is given. Our goal is to 

build piecewise cubic interpolant f  to � . On every sub-interval, we demonstrate pi(x) (a piece-
wise polynomial) such that

The following circumstances have been executed on the ith polynomial piece pi:

𝛼 = z1 < z2 < ⋯ < zn = 𝛽

f (z) = pi(z) for certain pi(z) ∈ ℙ4(i = 1, 2,… , n − 1).

(1)
pi
(
xi
)
= �

(
zi
)
, pi

(
zi+1

)
= �

(
zi+1

)

p�
i

(
zi
)
= si, p

�
i

(
zi+1

)
= si+1

Fig. 3   Methodology adopted for the realization of the soil erosion modeling in the Mohgaon watershed
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Here s1,… , sn are free factors. f  (approximate function) approves with � at z1,… , zn , 
constant up-to the first order on [α, β].

For computing the constants of the ith pi (polynomial piece), we use its Newton form:

Its coefficients have been determined from the distributed difference for �i using the 
input data:

Knots Data 1st divided difference
[, ]�

i

2nd divided difference
[, ,]�

i

3rd divided difference
[, , ,]�

i

zi
zi
zi+1
zi+1

d
(
zi
)

d
(
zi
)

d
(
zi+1

)
d
(
zi+1

)

si[
zi, zi+1

]
�

si+1

([
zi, zi+1

]
� − si

)
∕Δzi(

si+1 −
[
zi, zi+1

]
�
)
∕Δzi

(
si+1 + si − 2

[
zi, zi+1

]
�
)
∕
(
Δzi

)
2

These indications that, in terms of lifted powers 
(
z − zi

)r,

with

or

or

or

i = 1, 2,… , n − 1

(2)
pi(z) = �i

(
zi
)
+
(
z − zi

)[
zi, zi

]
�i +

(
z − zi

)2[
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]
�i +

(
z − zi

)3(
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)[
zi, zi, zi+1, zi+1

]
�i

(3)�i(z) = c1,i + c2,i
(
z − zi

)
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(
z − zi

)2
+ c4,i

(
z − zi

)3

c1,i = �i

(
zi
)
= �

(
zi
)
,

c2,i = �
�
i

(
zi
)
= si,

c3,i =
���

i

(
zi
)

2
=
[
zi, zi, zi+1

]
�i − Δzi

([
zi, zi, zi+1, zi+1

]�
i

)
=
([
zi, zi+1

]
� − si

)
∕Δzi − c4,iΔzi

c4,i = �
���
i

(
zi
)
∕6 =

(
si+1 + si − 2

[
zi, zi+1

]
�
)
∕
(
Δzi
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(4)d��
i−1

(
zi
)
= �

��
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(
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)
, i = 2, 3,… , n − 1

(5)2c3,i−1 + 6c4,i−1Δzi−1 = 2c3,i

(6)

2
{([

zi−1, zi
]
� − si−1

)
∕Δzi−1 − c4,i−1Δzi−1

}
+ 6c4,i−1Δzi−1 = 2

{([
zi, zi+1

]
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)
∕Δzi − c4,iΔzi

}
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zi−1, zi
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]
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)
∕Δzi − 2c4,iΔzi
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or

with

The rest parameters s1 and sn have been chosen such that s1 = 0 and sn = 0.

2.3.2 � Quadratic spline (Moghaddam et al. 2017)

To determine a numerical model of a quadratic spline, assume that the data are:{(
xifi

)}n

i=0
 wherever, as for linear splines,

A quadratic spline S2,n(x) is a C1(C1 continuity) piecewise quadratic polynomial. This 
means that:

S2,n(x) is piecewise quadratic, that is, among successive knots xi

S2,n(x) is C1; that is,S2,n(x) is reliable and has steady first subordinate anywhere in the mean-
time [a, b], exactly, at the bunches.

For S2,n(x) we would also like to have to be an interpolatory quadratic spline.
S2,n(x) interpolate the statistics, that is,

Inside each 
(
xi−1,xi

)
 interval, the comparing quadratic polynomial is nonstop and has 

constant subsidiaries of all requests. Subsequently, S2,n(x) or one of its subsidiaries can 
be spasmodic just at a bunch. Give it a chance to be watched that capacity S2,n(x) has two 
quadratic pieces inside knot xi; to one side of xi it is a quadratic Pi(x) though correcting it 
as a quadratic Pi+1(x).

In this manner, an important and adequate condition for S2,n(x) for these two quadratic 
polynomials, having a constant first subsidiary is an internal event to co-ordinate in the 
primary lower estimate. So we have an agreement of conditions of flatness: in every knot 
inside,

We also have an agreement for conditions of interpolation to attach data: i.e.,

(7)
2
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z
i−1, zi

]
� − s
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)
∕Δz

i−1 + 4(s
i
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z
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]
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= 2
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z
i
, z

i+1

]
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i

)
∕Δz

i
− 2

(
s
i+1 + s

i
− 2

[
z
i
, z

i+1

]
�
)
∕Δz

i

(8)si−1Δzi + si2
(
Δzi−1 + Δzi

)
+ si+1Δzi−1 = �i

(9)�i = 3(Δzi
[
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]
� + Δzi−1

[
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]
�, i = 2,… , n − 1

a = x0 < x1 < ⋯ xn = b, h ≡ max ||xi − xi−1
||,

(10)S2,n(x) =

⎧
⎪⎨⎪⎩

p1(x) = a1 + b1x + c1x
2, x ∈

�
x0,x1

�
p2(x) = a2 + b2x + c2x

2, x ∈
�
x1,x2

�
⋮

pn(x) = an + bnx + cnx
2, x ∈

�
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�

(11)S2,n

(
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)
= fi, i = 0, 1,…… .., n

(12)P
�
i+1

(
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)
= P

�
i

(
xi
)
, i = 1, 2,…… , n.
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In this line, forcing S2,n(x) to be continuous in the nodes also compounds the inclusion 
scenario. Given that all n quadratic parts have three unknown variables, 3n unexploded 
numbers are involved in our analysis of the ability S2,n(x) . Granting concordance between 
main auxiliary powers (n − 1) and immediate coefficient constraints and entry powers an 
additional 2n imperative. Thus, in the 3n dark equations, there are a total of 3n − 1 immedi-
ate imperatives. In all, we require 1 gradually (directly) limiting that there is an indiscern-
ible amount of circumstances from requests.

2.3.3 � Quintic spline (Tariq and Akram 2016)

Let xi = ��
(
� > 0,� = L�, � = 0, 1,… .�

)
 be network ideas of the constant divider of 

[0, b] into the 
[
xi−1, xi

]
 subintervals. Let �(x) be an sufficiently differentiable ability char-

acterized on [0,b] and S(x) be a quintic spline approximation to �(x) . Reflect that every 
quintic polynomial spline piece P�(x) has the accompanying structure:

� = 0, 1,…… ,� − 1, Beside with the prerequisite that

To improve the stability relations among the estimates of spline,

It is clear that in relation to Sis and any three subordinates, the spline can be formed at 
the boundaries of each subinterval. The numbers described in Eq. (5) are to characterize 
the spline to Sis and Fis as calculated:

Applying the 1st and 3rd subsidiary progressions at the knots,

(13)fi−1 = Pi

(
xi−1

)
, fi = Pi

(
xi
)
, i = 1, 2,…… ., n.

(14)
P�(x) = a�

(
x − x�

)5
+ b�

(
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)4
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(
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)3
+��

(
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)2
+ e�

(
x − x�

)
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(15)P�(x) ∈ c4[0, b]

(16)S(x) = Pi(x),∀x
[
xi,xi+1

]
, i = 0, 1,…… ., n − 1

(17)
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(
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)
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(
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)
= Si+1
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i

(
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)
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2

i

(
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(
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)
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i

(
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(18)

ai =
1

120h
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)
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24
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Ci = 16h
(
Mi+1 −Mi
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− h36
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 where ρ = 1 and 3, the accompanying useful relations are gotten:

Using conditions Eqs. (11) and (12), the accompanying consistency connection in 
regards to the fourth subordinate of spline Fi and Sii = 0, 1,…… .., n, is derived:

The two end conditions are

2.4 � Performance evaluation of spline

This study utilized five assessment criteria to survey the performance of cubic, quadratic 
and quintic splines, including the Absolute Prediction Error (APE), Integral Square Error 
(ISE), Coefficient of Efficiency (CE), Coefficient of Correlation (CC) and degree of agree-
ment (d) which can be communicated as follows:

(20)Mi−1 + 4Mi +Mi+1 = 12h
(
Si−1 − 2Si + Si+1

)
+ h260

(
7Fi+1 + 16Fi + 7Fi−1

)
.

(21)Mi−1 − 2Mi +Mi+1 = h26
(
Fi+1 + 4Fi + Fi−1

)

(22)

Si+2 − 4Si+1 + 6Si − 4Si−1 + Si−2 =
h4

120

(
Fi+2 + 26Fi+1 + 66Fi + 26Fi−2 + Fi−2

)

(23)−2S0 + 5S1 − 4S2 + S3 = −h2M0 +
h4

120

(
18F0 + 65F1 + 26F2 + F3

)

(24)

And Sn−3 − 4Sn−2 + 5Sn−1 − 2Sn = −h2Mn +
h4

120
(Fn−3 + 26Fn−2 + 65Fn−1 + 18Fn)

(25)APE =

∑n

i=1
(Mi − Ci)∑n

i=1
Mi

∗ 100

(26)ISE =

�∑n

i=1
(Mi − Ci)2

�0.5
∑n

i=1
Mi

∗ 100

(27)CE = 1

∑n

i=1
(Mi − Ci)2

∑n

i=1
(Mi − m)2

∗ 100

(28)CC =

∑n

i=1
(Mi − m)(Ci − c)�∑n

i=1
(Mi − m)2

�∑n

i=1
Ci − c

�2 ∗ 100

(29)d = 1 −

∑n

i=1
(Mi − Ci)2

∑n

i=1
[
���Ci − c��

�
+
���Mi − m��

�
]2

∗ 100
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In which the value of Ci , Mi , c and m, at the corresponding time, calculated/modeled, 
and mean value of the observed SYIs, is calculated and observed, independently of that 
value. The designs with ISE < 15%, APE < 35%, CE > 60%, d closer to 1 and CC > 0.75 are 
deemed to be of adequate exactness.

3 � Splines construction

AISLUS proposed an empirical relationship between SYI and area & delivery ratio. Dif-
ferent approaches were proposed for empirical relationship between delivery ratio and 
morphological characteristics of catchment such as catchment area, average relief or slope. 
These models are popularly employed because of their simplicity and easily available data.

The SYI was simplified utilizing the Mohgaon sub-watersheds data (Table 1), in per-
spective of the spline. The sub-watersheds 2, 4, 8, 9, 10, 11, 12, 15 were utilized for spline 
development and rest of the watersheds utilized for approval/validation of splines estimates.

We constructed the splines as explained in Sect.  3 for the Mohgaon watershed as 
follows:

As a nodal point consider CN value and the data point as SYI. Now the nodal points 
(CN) were set as monitors:

Using specified data at the knots �
(
x1
)
, �
(
x2
)
, �
(
x3
)
, �
(
x4
)
, �
(
x5
)
, �
(
x6
)
 , �

(
x7
)
, �
(
x8
)
 

we constructed a piecewise quadratic, quintic and cubic polynomial.

3.1 � Cubic spline

We find out the polynomial pieces as demonstrated in Sect. 3. The piecewise cubic polyno-
mials are, as shown in Fig. 4:

x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8

Table 1   Mohgaon Watershed 
data set utilized for cubic/
quadratic/quintic spline

Sub-watershed SYI CN

MG 1 1252.84 61.65
MG 2 973.76 68.04
MG 3 1109.84 56.65
MG 4 965.63 65.64
MG 5 943.09 73.51
MG 6 1054.65 55.28
MG 7 1322.99 62.48
MG 8 938.59 74.96
MG 9 1259.42 56.17
MG 10 1148.61 78.28
MG 11 846.58 62.68
MG 12 1337.36 59.38
MG 13 956.43 54.49
MG 14 915.91 61.47
MG 15 1052.09 54.35
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For the interval [54.35–56.17]

For the interval [56.17–59.38]

For the interval [59.38–62.68]

For the interval [62.68–65.64]

For the interval [65.64–68.04]

For the interval [68.04–74.96]

For the interval [74.96–78.28]

3.2 � Quadratic spline

We find out the polynomial pieces as demonstrated in Sect. 3. The piecewise quadratic poly-
nomials are, as shown in Fig. 5:

For the interval [54.35–56.17]

(30)p1(x) = 1052.09 + 0(x − 54.35) + 109.41(x − 54.35)2 − 25.73(x − 54.35)3

(31)p2(x) = 1259.42 + 142.62(x − 56.17) − 31.05(x − 56.17)2 − 1.81(x − 56.17)3

(32)p3(x) = 1337.36 − 112.73(x − 59.38) − 48.50(x − 59.38)2 + 11.39(x − 59.38)3

(33)p4(x) = 846.58 − 60.65(x − 62.68) + 64.28(x − 62.68)2 − 10.20(x − 62.68)3

(34)p5(x) = 965.63 + 51.70(x − 65.64) − 26.32(x − 65.64)2 + 2.58(x − 65.64)3

(35)p6(x) = 973.76 − 30.06(x − 68.04) − 7.74(x − 68.04)2 + 1.64(x − 68.04)3

(36)p7(x) = 938.59 + 98.44(x − 74.96) − 2.14(x − 74.96)2 − 2.55(x − 74.96)3

Fig. 4   Approximation of given dataset by cubic splines
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For the interval [56.17–59.38]

For the interval [59.38–62.68]

For the interval [62.68–65.64]

For the interval [65.64–68.04]

For the interval [68.04–74.96]

For the interval [74.96–78.28]

3.3 � Quintic splines

We evaluate the polynomial pieces as demonstrated in Sect. 3. The piecewise quintic polyno-
mials are, as illustrated in Fig. 6:

For the interval [54.35–59.38]

(37)p1(x) = −5139.33 + 113.92x + 0x2

(38)p2(x) = −93242.62 + 3250.94x − 27.92x2

(39)p3(x) = −71483.44 + 2529.03x − 21.94x2

(40)p4(x) = 361575.43 − 11289.06x + 88.29x2

(41)p5(x) = −554116.29 + 16611.36x − 124.24x2

(42)p6(x) = 214837.27 − 5991.62x + 41.86x2

(43)p7(x) = −8087.82 + 175.15x − 0.73x2

(44)p1(x) = −0.9297 − 20.1096x − 269.2490x2 + 13.2029x3 − 0.2143x4 + 0.0012x5

Fig. 5   Approximation of given dataset by quadratic splines
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For the interval [59.38–62.68]

For the interval [62.68–65.64]

For the interval [65.64–68.04]

For the interval [68.04–74.96]

For the interval [74.96–78.28]

4 � Splines validation and inter‑comparison of splines

For validation of the spline methods applied, the parameters provided in Tables 2, 3, 4 and 
CN values were used in equations (Eqs. 30–49) for computing SYI. This figured sediment 
yield index named as computed SYI (SYIC) was matched with the conventionally obtained 
SYI using AISLUS method named as observed SYI (SYIo). The values of calculated SYI 
were shown in Figs. 7, 8 and 9 against the SYI observed. The model assessment measures 
are appeared in Table 5. Both value SYI observed and computed were analyzed through a 
perfect fit line. The model factor values for Mohgaon watershed are given in Tables 2, 3, 4.

(45)p2(x) = −0.7156 − 17.6459x − 269.4153x2 + 13.2071x3 − 0.2144x4 + 0.0012x5

(46)p3(x) = −0.5895 − 15.9966x − 269.5206x2 + 13.2096x3 − 0.2144x4 + 0.0012x5

(47)p4(x) = 0.0234 − 3.2023x − 119.7290x2 + 4.8090x3 − 0.0640x4 + 0.0003x5

(48)p5(x) = −0.2674 − 6.8065x − 119.5169x2 + 4.8043x3 − 0.0639x4 + 0.0003x5

(49)p6(x) = −0.4616 − 10.1058x − 119.3407x2 + 4.8008x3 − 0.0639x4 + 0.0003x5

Fig. 6   Approximation of given dataset by quintic splines
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To compare the applied splines (quadratic/quintic/cubic), Table 5 indicates the statisti-
cal criteria of the applied splines. It was detected that the cubic spline anticipated better in 
approximating SYI from runoff CN compared to quadratic and quintic splines. The assess-
ment measures, viz., d, APE, CC, ISE and CE were within the permissible limits in the 
cubic spline as recommended by Pyasi and Singh (2004).

As expected, the cubic spline produced the best accuracy with respect to all perfor-
mance criteria (i.e., APE = 1.35, ISE = 3.09, CE = 62.08, CC = 79.60 and d = 0.99). This 
clearly shows that the cubic spline could be a suitable tool for sediment prediction at daily 
scale. Appropriately the quintic spline (with an average value of APE = 19.59, ISE = 7.84, 
CE =  − 165.73, CC = 19.30 and d = 0.26) was ranked second and the quadratic spline (with 

Table 2   Values of the coefficient 
and constructed cubic spline

CN Coefficient Splines

C1 C2 C3 C4

54.35–56.17 1052.09 0.00 109.41  − 25.73 p
1

(x)

56.17–59.38 1259.42 142.62  − 31.05  − 1.81 p
2

(x)

59.38–62.68 1337.36  − 112.73  − 48.50 11.39 p
3

(x)

62.68–65.64 846.58  − 60.65 64.28  − 10.20 p
4

(x)

65.64–68.04 965.63 51.70  − 26.32 2.58 p
5

(x)

68.04–74.96 973.76  − 30.06  − 7.74 1.64 p
6

(x)

74.96–78.28 938.59 98.44  − 2.14  − 2.55 p
7

(x)

Table 3   Values of the coefficient 
and constructed quadratic spline

CN Coefficient Splines

C1 C2 C3

54.35–56.17 0.0000 113.9176  − 5139.3306 p
1

(x)

56.17–59.38  − 27.9244 3250.9406  − 93,242.6232 p
2

(x)

59.38–62.68  − 21.9380 2529.0303  − 71,483.4369 p
3

(x)

62.68–65.64 88.2893  − 11,289.0573 361,575.4289 p
4

(x)

65.64–68.04  − 124.2368 16,611.3608  − 554,116.2918 p
5

(x)

68.04–74.96 41.8639  − 5991.6247 214,837.2742 p
6

(x)

74.96–78.28  − 0.7302 175.1496  − 8087.8233 p
7

(x)

Table 4   Values of the coefficient and constructed quintic spline

CN Coefficient Splines

C1 C2 C3 C4 C6 C7

54.35–59.38 0.0012  − 0.2143 13.2029  − 269.2490  − 20.1096  − 0.9297 p
1

(x)

59.38–62.68 0.0012  − 0.2144 13.2071  − 269.4153  − 17.6459  − 0.7156 p
2

(x)

62.68–65.64 0.0012  − 0.2144 13.2096  − 269.5206  − 15.9966  − 0.5895 p
3

(x)

65.64–68.04 0.0003  − 0.0640 4.8090  − 119.7290  − 3.2023 0.0234 p
4

(x)

68.04–74.96 0.0003  − 0.0639 4.8043  − 119.5169  − 6.8065  − 0.2674 p
5

(x)

74.96–78.28 0.0003  − 0.0639 4.8008  − 119.3407  − 10.1058  − 0.4616 p
6

(x)
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an average value of APE = 20.99, ISE = 8.92, CE =  − 199.90, CC = 8.95 and d = 0.15) was 
the 3rd best models.

As the literature review shows, cubic spline is popular because it is the lowest degree 
that allows separate control on the two end points and two end derivatives and it is also the 
lowest degree that allows inflection points (Prasad et al. 2018). DC power flow yields quick 
results at the expense of accuracy, whereas AC power flow compromises speed for accu-
racy. A solution to the above-mentioned problem is found by employing curve-fitting tech-
niques especially the cubic spline interpolation technique (Othman et al. 2005). The cubic 
spline interpolation model (CSIM) method performs better than harmonic current injection 
model (HCIM) and harmonic voltage source model (HVSM) and provides a better fit for 
the voltage and current characteristics (Liu et al. 2010). The Niu et al. (2017) suggested 
that the conduction angle determined by using cubic splines shows significant match with 

Fig. 7   Scatter plot between actual and predicted SYI by cubic splines

Fig. 8   Scatter plot between actual and predicted SYI by quadratic splines
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the values obtained by simulation. Also, the use of cubic splines yields quicker results—a 
trait which would be beneficial for real-time applications.

5 � Conclusion

In this study, an attempt has been made to develop a relationship between SYI and CN. 
Cubic, Quadratic and Quintic splines are developed between sediment yield index and 
curve number using eight sub-watershed data. This approximation is validated for sediment 
yield index for the remaining seven sub-watersheds. Subsequently, the SYI (observed) 
data of Mohgaon watershed exhibit a strong correlation with SYI derived using the cubic 
spline. High R2 values (0.87) compared to quadratic spline (R2 = 0.40) and quintic spline 
(R2 = 0.10) support the general applicability of the proposed concept. The major output of 
this work is that on the basis of given set of curve numbers, we predict the approximate 
value of sediment yield index.

The sediment yield index is influenced by numerous physical attributes of a catchment. 
It changes with the slope, soil, land use land cover, drainage area and runoff-rainfall fac-
tors. This study establishes a link between SYI and CN. The spline approximation methods 
don’t consider the spatial variety of the numerous interfacing factors inside a watershed. 
The results of the present study need to be verified on a large data set covering watersheds 
from different climatic/geologic settings. The relationship between SYI and CN depends 
on the assumption that land use/land cover and other parameters remain constant with 
time. Therefore, incorporation of time dependency of these parameters in the GIS environ-
ment may be a scope for future study.If the value of curve number does not belong to the 

Fig. 9   Scatter plot between actual and predicted SYI by quintic splines

Table 5   Performance evaluation 
of splines

Spline APE ISE CE CC d

Cubic spline 1.35 3.09 62.08 79.60 0.99
Quadratic spline 20.99 8.92  − 199.90 8.95 0.15
Quintic spline 19.59 7.84  − 165.73 19.30 0.26
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domain of approximation, then getting the approximation value of SYI is not possible. This 
problem may be resolved by applying certain techniques of extrapolation. It would be an 
interesting field of further extension of the present work.
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