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Abstract
Runoff–sediment process modeling is highly variable and nonlinear in nature. For sediment yield prediction, the difficulty

of rainfall–runoff–sediment yield hydrological processes remains challenging. The present study uses a simple nonlinear

dynamic (NLD) model to predict daily sediment yields, taking into account the degree of daily–sediment yield in

catchment areas, and its findings were compared to three widely used models including artificial neural networks (ANN),

support vector machine (SVM), and gene expression programming (GEP). The daily measured discharge–sediment data for

25 years were obtained from Shakkar Watershed; Central India as in the current study. The coefficient of correlation (CC),

Nash-Sutcliff (NS), and root-mean-square error (RMSE) were employed to assess the performance of the models. The

results show that the NLD model was found better than ANN, SVM, and GEP model. These models had correlation

coefficient (CC = 0.975, 0.887, 0.843, and 0.901), root-mean-square error (RMSE = 0.748, 1.751, 1.961, and 1.545), and

Nash–Sutcliffe efficiency (0.952, 0.784, 0.673, and 0.814) correspondingly. Hence, the NLD model can be used for

predicting sediment. In order to implement appropriate measures of soil conservation in the watershed to reduce the

sediment load in the river, predicting the sediment yield is very necessary to maximize the life of the structure.

Keywords Sediment yield � Runoff � Dynamic model � ANN � SVM � Gene expression programming

1 Introduction

Research on rainfall and runoff produced sediment-based

problems would be very helpful in knowing the broad issue

of soil degradation and soil erosion in an agricultural area

like India, where there are growing pressures on soil and

water resources from the inhabitants (Meshram et al.

2019a,b). The planning, designing, and evaluation of land

conservation projects, reservoir design and management,

environmental and water-pollution measures, and drought

and flood control programs are mostly required in the case

of information about a suspended sediment yield (wash

load) (Meshram et al. 2018a). Information on suspended

catchment sediment yields (wash load) is required on

several occasions in order to schedule, plan and review

land management systems, park design and operation,

environmental and water pollution strategies, as well as

drought and water control programs.

Various approaches have been proposed to predict soil

loss and sediment transport under current and alternate
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hydrological conditions. The specific needs for soil loss

calculation are so varied that no single model is able to

meet the results satisfactorily. Most of these models can be

grouped into three broad categories including (i) empirical

models based on empirical equations generally derived

from field data such as sediment rating curve (Walling

1977), and regression models (Khosla 1953; Flaxman

1972; Singh 1973; Williams 1977; Renard 1980; Narayan

and Babu 1983; Garde and Kothyari 1987); (ii) conceptual

soil erosion models: Morgan–Morgan–Finney (MMF) and

the revised MMF (RMMF) (Morgan 2001), and (iii) the-

oretical or physically based models; sediment component

of SHE-SHESED (Wicks and Bathurst 1996), Chemicals,

Runoff, and Erosion from Agricultural Management Sys-

tems-CREAMS (Kinsel, 1980), and Areal Non-point

Source Watershed Response Simulation-ANSWERS

(Beasley et al. 1980). The accessible soil loss measure-

ments can be divided on the basis of storm-wise and

annually analyses. Storm-wise models are sediment graph

models (Mishra and Ravibabu 2009; Fazli and Noor

2013, 2014). However, soft data mining techniques use

alternative simulation approaches distributed and

physically oriented.

Black box models, such as ANN, have been promising

in various studies owing to it is the ability to handle the

chaotic and highly nonlinear system (Rao et al. 2014). Yet,

one of the most important steps to evaluate dominant

system input variables is when using a computational

method. Several researchers demonstrated the potential

applications of ANN by taking different input parameters

in specific hydrological processes and water resources. The

ANN models have also been stated not to be very accu-

rately satisfactory. In most models, the rainfall–runoff and

the rainfall–runoff–sediment processes are analyzed and

simulated using only the initial data onto hydrological time

series.

The runoff–sediment production method of the

watersheds is very complicated (Meshram et al. 2018b).

The time and spatial variability are extremely nonlinear.

The event-based modeling has an important position in

watershed management and development (Meshram et al.

2018c). Many models, such as black box, conceptual,

and physical techniques, were developed in particular for

the rainfall–runoff phase on the other hand, very few

models for the reliable estimation of storm event sedi-

mentgraphs. It is worth mentioning that there is a

growing need for comprehensive information about river

and sediment, due to various conservation, development,

and useful utilization programs for all-natural resources

including soil and water, over the past few centuries

(Meshram et al. 2018d).

Different researchers in the distinct region of India have

developed a dynamic model of runoff–sediment yields.

Kumar and Das (2000) proposed a model for the simulation

of daily runoff and sediment based on a dynamic system

for Ramganga (India). In the Naula Watershed Ramganga

basin (India), Pyasi and Singh (2001) studied a dynamic

model of sediment yield on a weekly basis. In their

research, the models focused on the idea to determine and

assign the variable weighting to antecedent runoff and

sediment occurrences were created for both linear and not

linear annual sediment yield forecast. The new model of

linear regression was developed by Panigrahi (2007) to

estimate sediment yield, with a known value of runoff for

Odisha Watersheds. For the Kushinagar Watershed of the

Vamsadhara Rivers Catchment, Orissa (in India), a

dynamic model of the sediment yields was developed by

Ranjan et al. (2011). For this purpose, a linear and non-

linear modeling were developed for the estimation of

sediment that involved the idea of defining and assigning

the weight of the precipitation-runoff–sediment system for

the antecedent event. Kumar et al. (2013) in the Barakar

River basin, Jharkhand (India) Giridih Watershed, consid-

ered the current runoff and previous levels of runoff and

sediment yield as the input variable and subsequently

established nonlinear (log–log transformed) sediment yield

model to assess the daily catchment sediment yield. For the

nonlinear stochastic model, multiple regression coefficients

were 0.873. Singh et al. (2019) developed new dynamic

AES (advanced encryption standard) algorithm by key-

dependent dynamic S-Box (substitution) using dynamic

irreducible polynomial and affine constant. This analysis is

done on grayscale and color images. Both the images are

encrypted and decrypted by using standard AES and

dynamic AES.

Artificial neural networks have been applied in almost

all branches of science. ANNs are well known for their

ability to model nonlinear systems, such as precipitation-

runoff, streamflow, and time series analysis (ASCE, 2000).

Specific applications are rainfall–runoff modeling (Chen

et al., 2013; Tfwala et al., 2013), groundwater management

and forecasting (Daliakopoulos et al., 2005; Nourani et al.,

2008; Lee et al., 2012; Gorelick and Zheng, 2015; Ada-

mowski and Chan, 2011), streamflow forecasting (Anctil

et al., 2004; Besaw et al., 2010), rainfall forecasting

(Chiang et al., 2004; Nasseri et al., 2008), suspended sed-

iment prediction (Alp and Cigizoglu, 2007; Kisi and Shiri,

2012), and water quality management (Palani et al., 2008;

Faruk, 2010).

SVM is one of the most important machine learning

methods utilized in hydrology and has proved to be an

alternative to ANNs. The SVM is used for hydrologic

forecasts, such as precipitation (Behzad et al., 2009; Okkan

and Serbes, 2012), stream flows (Asefa et al., 2006; Liu

et al., 2014), sediment (Misra et al., 2009; Ebtehaj et al.,

2016), and groundwater fluctuations (Shiri et al., 2013;

S. G. Meshram et al.
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Barzegar et al., 2017) and has been found to perform better

than ANNs. Yoon et al. (2011) found that the prediction

error of SVM for forecasting flood stage was less than of

ANN models. Thongsuwan et al. (2020) developed a new

deep learning model for classification problems. ConvXGB

assessed not only on image data, but also on some general

datasets, which used our data preprocessing module.

There were few research studies on the use of GEP in

water resources engineering in the literature. Babovic and

Keijzer (2002) explored the rainfall–runoff simulation

using GEP. Cousin and Savic (1997); Savic et al. (1999);

Drecourt (1999), and Crapper (1999, 2001) were the main

applicants. GEP was used by Guven et al. (2008) to mea-

sure reference evapotranspiration and to use GEP sediment

models were recently modeled by Aytek and Kisi (2008).

Since the last decade, linear genetic programming (LGP)

has been pronounced as a new robust method to solve wide

range of modeling problems in water engineering and has

been limitedly used in estimation hydrological parameters

(Danandeh Mehr et al., 2013, 2018; Mehr et al., 2014;

Olyaie et al., 2017; Abba et al., 2020a, b). Guven (2009)

applied LGP, a variant of GP, and two versions of neural

networks for prediction of daily flow of Schuylkill River in

the USA and showed that the performance of LGP was

moderately better than that of ANN. Danandeh Mehr et al.

(2013) applied LGP in comparison with a neuro-wavelet

technique in time series modeling of stream flow on Coruh

River in Turkey. According to Mehdizadeh et al. (2020),

one of the most important of standalone GEP could be

attributed to resolving overfitting problem. Kisi et al.

(2013) investigated the ability of GEP, ANFIS and ANN

techniques in modeling DO concentration and showed that

the GEP model performed better than the ANN and ANFIS

models in modeling DO concentration. Londhe and Char-

hate (2010) used ANN, GP, and model trees (MT) to

forecast river flow one day in advance at two stations in

Narmada catchment of India. The results showed the ANNs

and MT techniques performed almost equally well, but GP

performed better than its counterparts. Martı́ et al. (2013)

applied ANN and gene expression programming (GEP)-

based models to estimate outlet DO in micro-irrigation

sand filters. Due to the importance of this topic, there are

still a need to employ several black-box and white-box

approach for modeling of rainfall–runoff–sediment. This

research aimed to develop a nonlinear dynamic (NLD)

model for sediment yield prediction and to compare it with

ANN, SVM, and GEP techniques.

2 Materials and method

2.1 Study area

Gadarwada gauging station is one of the gauged watershed

of the Shakkar watershed (Fig. 1). The Shakkar River is a

major stream of Narmada River. The Shakkar watershed

lies between 220230-23002’ N latitude and 77025’-780520 E

longitude. The total catchment area of this watershed is

2220 sq. km. The topography of the watershed is undu-

lating. The climate of the Shakkar watershed is dry except

Fig. 1 Location map of the study area

A comparative study between dynamic and soft computing models for sediment forecasting
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the monsoon season. Rainfall mainly occurs from June to

October by southwest monsoon (Gajbhiye, 2015). The soil

in the watershed can be classified into clay to loamy tex-

ture. In 1990, the Central Water Commission (CWC)

Bhopal began collecting the hydrological data at Gadar-

wada Station. During the 1990–2015 study, the daily sed-

iment and runoff data were collected. Table 1 shows the

statistical parameters for runoff and sediment data. Fig-

ure 2 displays the flow diagram of the technique.

2.2 Input–output data preparation and selection
of network architecture parameter
estimation

In training and testing/validation of the model, daily dis-

charge and sediment flow data were used. Daily discharge/

runoff and sediment output analysis showed that the more

than two days of the previous hydrological values attained

no substantial effect on sediment output today. Therefore,

two and multiple regression equations for sediment pre-

diction were established in this study a maximum lag

value.

The data onto multi-layer networks are divided into 60,

20, and 20%, for training, verification, and testing,

respectively (Tiwari and Chatterjee 2010; Liu et al., 2013).

Thus, daily data onto 25 years (1990–2015) were used for

sediment yield prediction. In this way, the data were

divided into 60%, 20%, and 20% for training, verification,

and testing of the models (ANN, SVM, and GEP),

respectively.

2.3 Soft computing models

2.3.1 ANNs

ANN model consists of various processing components or

neurons that are strongly interconnected. A collection of

inputs to a set of outputs is the primary function in ANN’s

paradigms. The sigmoid function is the nonlinear activation

function most commonly used in ANN. Due to its sim-

plicity and its efficiency, multilayer perceptron feed-for-

ward networks consisting of multiple neuron layers with a

supervised learning process were used.

The ANN architecture comprises three layers, i.e., input,

output, and hidden layers, as presented in Fig. 3.

Table 1 The statistical parameters of data used

Data Period Length of

data

Minimum Maximum Median Mean Standard

deviation

Discharge (Cumec) June-Oct (1990)- June-Oct

(2015)

3945 0 5850 42.33 109.91 271.03

Sediment yield

(MT)

June-Oct (1990)- June-Oct

(2015)

3945 0 2,682,247.08 263.53 10,131.12 68,135.42

Training

Testing

Validation

15-years

5-years

5-years

25-years data
Discharge 

Sediment
Input data  Output data Sediment

Comparative between 
dynamic and soft 

computing models for 
sediment forecasting Simple nonlinear dynamic (NLD) 

Soft computing models 

Gene expression programming (GEP)

Support vector machine (SVM)

Artificial neural network (ANN)

Performance 
coefficients

Root mean square error (RMSE)

Nash-Sutcliff (NS)
 Coefficient of correlation (CC)

Fig. 2 Flowchart of methodology
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It can be given as below:

cj ¼ f
X

i

xijX ij

 !
ð1Þ

where cj, f ð:), X ij, and xij are the output of node j, the

transfer function, the signal of input from i th node in the

previous layer to jth node and weight between jth node and

ith node, respectively. In this study, feed-forward ANN

(FNN) was utilized by employing a Levenberg–Marquardt

training algorithm.

Architecture is one of the main characteristics of a

neural network layer, and it is proper selection served as a

significant element for attaining the best model. Nonethe-

less, Shu and Ouarda (2007) proposed that less than twice

as many hidden nodes be inputs. As such, trial and error

methods have been used to determine the best-hidden

neuron and architecture in this study.

The main advantage of MLP-ANNs is several kinds of

ANNS (Tiwari and Chatterjee, 2010), but it is less complex

than other ANNs. Consequently, the sigmoid feed-forward

feature for ANN training has been used (Khalil et al. 2011;

Kisi 2011). In the current study, input–output pairs were

added to the network of a chosen architecture for training

and testing datasets. In order to prevent training or fitting of

the model, a testing dataset was used for an early stop

approach relevant to the epoch size.

2.3.2 SVM

The SVM devises a computationally proficient method for

learning and isolating hyperplanes in a high-dimensional

component space (Vapnik, 1995). SVM builds an N-di-

mensional hyperplane that isolates information into two

classifications. SVM models are identified with neural

systems. An SVM accomplishes higher arrangement rates

in contrast to other characterization strategies. There are

two types of SVM: straight SVM and non-direct SVM

(Vapnik, 1999). The straight SVM was utilized here.

SVM is a cutting edge classifier and can speculate direct

characterization limits in a multidimensional space (Cortes

and Vapnik 1995; Cortes and Vapnik, 1998; Vapnik,

1998). SVM is configured by hyperplane (Cortes and

Vapnik 1995) that implies the choice limits named ‘‘sup-

port vectors’’ (Fig. 4). The forecasting is done in light of

these choice limits. In SVM, exactness is achieved in the

estimation of class expectation concerning another infor-

mational index which is shaped using an ideal choice limit

from the preparation information. Subsequently, the

exactness rate is broken down by getting class precision

(Cortes and Vapnik 1995). A basic interpretation of the

SVM calculation is given afterwards. Given a training set

D ¼ xicif gni¼1 with input vectors xi ¼ x
1ð Þ
i ; . . .x

nð Þ
i

� �T
2 Rn

and target labels ci 2 �1;þ1f g, the SVM classifier, as

indicated by Vapnik’s unique plan, fulfills the accompa-

nying conditions

wT[ xið Þ þ b� þ 1 if ci ¼ þ1 ð2Þ

wT[ xið Þ þ b� � 1 if ci ¼ �1 ð3Þ

Which is equivalent to

ci w
T[ xið Þ þ b

� �
� 1 i ¼ 1; 2; 3. . .n

where w; b are the weight vector and the bias, respectively.

Nonlinear function [ :ð Þ : R2 ! Rnk maps info or estima-

tion space to a high-dimensional, and potentially unending

dimensional, highlight space (Min and Lee, 2005).

Application is led with a vector which can be part direct

as 1 or—1 with a class portrayal in view of Eqs. 2 and 3

(Cortes and Vapnik 1998). The hyper-planes of specimens

are not discovered by only adjoining the line. For superior

speculation, they should persevere inside a specific sepa-

ration. The separation of the closest specimens on the two

Input Layer 

Middle Layer 

Output Layer 

Fig. 3 A schematic structure of ANN

Fig. 4 A schematic representation of SVM (Corinna et al. 1995)

A comparative study between dynamic and soft computing models for sediment forecasting
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sides of the limit is the edge which ought to be as high as

feasible for ideal speculation (Cortes and Vapnik, 1998).

2.3.3 GEP

GEP was suggested as the genetic algorithm genotype/

phenotype (Ferreira, 2001). The GEP algorithm method

shares many common steps with other evolutionary algo-

rithms. For example, it begins by developing an initial

population until the termination criterion is achieved.

Instead, according to the preset fitness function, the best

chromosome is selected as its final production.

GEPs are genetically modified evolutionary algorithms

(Koza, 1999; Parsaie et al., 2017). The GEP computer

programs, then expression trees (ETs), all are held in linear

chromosomes. ETs are advanced computer programs that

solve a specific problem and are selected for fitness-based

solutions.

GEPs is a complete system of the kind phenotype that

distinguishes the genotype from the phénotype. On the

other side, GPs are replicators. GEP solving potential is

therefore greatly improved with respect to GP (Ferreira,

2001). By initializing the population in which chromo-

somes of the individual are generated randomly, GEP

begins the search solution. Such chromosomes are inde-

pendently tested and replicated with modifications

depending on their fitness role. The breeding process is

repeated until GEP has been established or a solution has

been found in a predefined number of generations. Gene

expression programming mathematical operators used:

F1 ¼ fþ;� ; � ; = ;p;Exp; Ln2;
ffiffiffiffiffiffiffiffiffi
; Sin3

p
;Cos;Atang ð4Þ

F2 ¼ þ;� ; � ; =f g ð5Þ

F3 ¼ þ;� ; � ; =; x2
� �

ð6Þ

F4 ¼ þ;� ; � ; =; x3
� �

ð7Þ

2.4 Nonlinear Dynamic model (NLD)

The functional presentations of dynamic-invariant models

for runoff–sediment yield [Eqs. (8) and (9)] are as follows:

St ¼ f Qt;Qt�1;Qt�2; . . .Qt�n:St�1; St�2; St�3. . .St�nð Þ ð8Þ

In the logarithmic form,

ln St ¼ lnK0 þ
Xn

i¼0

KQi
lnQt�i þ

Xn

i¼1

KSi ln St�i ð9Þ

where is the respective coefficient of the watershed’s

lumped results. t’ represents the current parameter time

value, and t-1, t-2…, t-n are the previous 1, 2…, n time lags

within days. The K coefficients have been determined

through the multiple step-by-step regression analysis to

identify the sensitivity of these variables. The system

analogy of it is expressed as in Fig. 5, where: Q and S are

daily runoff and sediment yield, respectively.

In India, especially, the departmental organizations are

the majority of watershed managers. Staff are unfamiliar

with modern tools that require skills. Nevertheless, non-

linear models for adaptive use can be run with SPSS and/or

excel sheet statistic code. In this analysis, therefore, the

simple nonlinear dynamic approach has been put more

emphasis. For ANN, SVM, and GEP, various combinations

of the number of input parameters are chosen, equal to or

lower than the maximum number of model parameters

calculated in a nonlinear dynamic system by phase

regression. Table 2 has been shown the different combi-

nation of input for the initial modelling. Then, the three

models were compared with a nonlinear dynamic model for

runoff–sediment processes to get a better option.

2.5 Parameter estimation

Data have been evaluated in Windows edition 16.0 using

the SPSS Statistical Package. One-ways multivariate

analyses were used to depart from the Qt-2, Qt-1, Qt, St-1 and

St-2 factors for multi-step regression. In the case of runoff–

sediment yield relationship, sediment yield (St) as the

dependent variable and Qt-2, Qt-1, Qt, St-1, St-2 were inde-

pendent variables.

2.6 Qualitative evaluation of model
performance

In this study, three error measures were utilized to assess

the quality of prediction models: correlation coefficient

(CC), RMSE, and Nash-Sutcliff coefficient (NS) as

follows:

Fig. 5 Schematic representation

of runoff and sediment yield

process in a watershed

S. G. Meshram et al.
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CC ¼
PN

i¼1 Oi � Ooð Þ Ci � Ccð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Oi � Ooð Þ2PN

i¼1 Ci � Ccð Þ2
q ð10Þ

RMSE ¼
ffiffiffiffi
1

N

r XN

i¼1

Oi � Cið Þ2 ð11Þ

NS ¼ 1 �
PN

i¼1 Oi � Cið Þ2

PN
i¼1 Oi � Ccð Þ2

ð12Þ

where, Oi and Ci are the observed and calculated values in

time step i, respectively. N The number of data, Oo, and Cc

are the mean of observed and calculated values,

respectively.

3 Results and discussion

Using the daily discharge and sediment yield data series for

Shakkar watershed located in the Central India, the NLD,

ANN, SVM, and GEP have been developed and evaluated

for sediment yield prediction. The entire data were split

into training (60%), verification (20%), and testing (20%)

sub datasets and MATLAB software was implemented for

model construction.

The effectiveness of the models was examined by

comparing the forecasted and observed sediment yield data

values at the study location. The performance of the

models in prediction of sediment yield was estimated using

a set of statistical metrics (NS, RMSE, and CC) and visual

inspection of data through scatter plots.

3.1 Model development for runoff–sediment
yield process

The all four models (NLD, ANN, SVM, and GEP) were

developed by considering the daily dataset from 1990 to

2015.

The nonlinear dynamic (NLD) model with the highest

R2 (0.91) was developed as follows for runoff–sediment

yield modeling on the basis of the stepwise regression:-

ln St ¼ �0:502 þ 1:508 lnQt � 0:976 lnQt�1

� 0:336 lnQt�2 þ 0:647 ln St�1 þ 0:193 ln St�2

ð13Þ

where Q (Cumec) and S (Kg/Sec). As mentioned above,

the maximum number of inputs to the ANN, SVM and

GEP models for these five independent variables are

chosen.

Standardization to improve integrity and reduce the

redundancy of data was performed prior to models design.

Various single layer networks and two hidden layer net-

works were trained up to the maximum iterations or peri-

ods of 2000, chosen using the minimum values for the root-

mean-square error and maximum values for CC and NS,

with different combinations of hidden neurons and the best

suited network (Agarwal et al. 2006). Th e test datasets

used to study the best-performing model by the observa-

tions and the simulations of runoff and sediment yield were

saved after the training cycle had satisfactorily been

completed. For the contrast with the respective observed

values, the normalized production values have been

reversed to the forecasted values of runoff and sediment

yield. In terms of CC, RMSE (Agarwal, 2007), and effi-

ciency (NS) model (Nash and Sutcliffe 1970; Rao et al.,

2014), the results of the built models were evaluated.

Elkiran et al. (2019); Legates and McCabe, (1999) sug-

gested that at least one’ good-of-fit’ (i.e. NS) and at least

one absolute measure of error (e.g., RMSE) should be

included in a systematic model performance assessment. In

ANN model, trial and error identification of proper nodes

in the hidden layers is crucial for the determination of the

best structure; hence, the 5-input network structures 5-5-1

is observed as a better one than the other networks based on

performance criterion (Table 3), i.e. 5 inputs, 1 hidden

layer of 5 neurons and 1 output period. However, the SVM

model showed better performances in comparison with

Table 3 Structure of neural networks and statistical indicators in the

training and validation phase

Row Structure Training Validation

NS RMSE CC NS RMSE CC

1 3-2-1 0.544 4.347 0.678 0.617 3.495 0.685

2 3-5-1 0.583 4.156 0.727 0.675 3.261 0.749

3 4-2-1 0.585 3.152 0.734 0.674 2.981 0.751

4 4-5-1 0.593 3.134 0.745 0.686 2.853 0.768

5 5-2-1 0.636 2.691 0.787 0.760 1.892 0.862

6 5-5-1 0.632 2.652 0.782 0.784 1.751 0.887

7 5-7-1 0.639 2.664 0.791 0.768 1.817 0.871

Table 2 Different combinations of discharge and sediment for the

initial modeling

1 Qt-

2

Discharge of two days ago

2 Qt-

1

Discharge of previous day

3 Qt Discharge of current day

4 St-1 sediment of previous day

5 St-2 sediment of two days ago

A comparative study between dynamic and soft computing models for sediment forecasting
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linear and polynomial kernel based on the kernel (Radial

Basis Function) (Table 4).

In the GEP model, the mathematical expressions for the

forecast sediment S (representing S(t)) are given in terms

of antecedent sediment, e.g., S(t-1) and antecedent dis-

charge, e.g., Q(t-1), Q(t-2), present discharge Q(t) are

summarized in Table 5. Table 6 summarizes the four

mathematical function sets of the GEP model. It is note-

worthy that the forecast sediment for both the training and

testing sets, operator F1 were found to be performing better

compared to other operators. A visual assessment of the

predicted and observed sediment during calibration (1990–

2005) (Fig. 6) shows that the NLD predicted sediment had

the best fit, followed by GEP, ANN and that the SVM fit

was the worst.

All the four models (NLD, ANN, SVM, and GEP) were

tested and verified for their applicability in the study area

by applying them on the daily sediment yield data series

individually for successive years. The comparison of

observed value and predicted value through developed

model using second dataset (2006–2015) along with the

graphical testing as shown in Fig. 7. The value of

qualitative parameters for model developed using the

datasets of 1990–2005 is also given in Table 7. It was

observed that model perform well for prediction of daily

sediment yield which is the necessity for a successful soil

conservation programs.

3.2 Model validation for runoff–sediment yield
process

All the models (NLD, ANN, SVM, and GEP) were vali-

dated for the daily discharge-sediment yield data series

from the years 1990 to 2015. The value of the (R2) coef-

ficient of determinations for all the models was observed to

be 0.93, 0.88, 0.84, and 0.90, respectively. R2 is optimized

for variations between mean and variance of measured and

expected quantities; it is prone to outliers and must not be

utilized exclusively for examination of developed models

(Legates and McCabe 1999; Shiri and Kisi 2012). There-

fore, alternative error measurement indices (NS, RMSE,

and CC) were used for model performance evaluation. The

values of NS and RMSE of NLD model were found of

(95.20 and 0.748), ANN model were (78.40 and 1.751),

SVM model were (67.30 and 1.961), GEP model were

(81.40 and 1.545), respectively (Table 7). The NLD and

SVM models proved the greatest and least predictive

capability, taking into account all the evaluation metrics

together. The correlation coefficient (CC) of all model is

found better during the testing process than the respective

training phase. Validation statistics of all the best-fit

models were found to satisfy the criteria of a good model.

3.3 Comparison of prediction models

We investigated the ability of the NLD model for sediment

yield prediction and compared with ANN, SVM, and GEP

Table 4 Results of the three

kernel types used in the SVM

model for training and

validation step data

Kernel Training Validation

NS RMSE CC NS RMSE CC

Polynomial 0.540 3.487 0.739 0.661 2.223 0.823

Linear 0.543 3.484 0.741 0.664 2.209 0.829

Radial Basis Function 0.549 3.480 0.745 0.673 1.961 0.843

Table 5 Gene expression

programming equations for the

four sets of selected

mathematical operators

Operator GEP equations

F1 S tð Þ ¼ Atan S t � 1ð Þ � Q tð Þ4
h �

� sin �1:72ð Þ2Þ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q tð Þ

p
� S t � 1ð Þ

q

F2 S(t) = 0.17S(t-1) ? 0.055Q(t-1) ? 0.09Q(t) ? 1.31

F3 S(t) = 8.12S(t-1) ? S(t-1)—0.75Q(t)

F4 S(t) = -0.62S(t-1) ? 0.23Q(t) ? 0.37

Table 6 Results of the gene expression programming method using

four mathematical function sets

Operator Training Validation

NS RMSE CC NS RMSE CC

F1 0.564 2.126 0.761 0.814 1.545 0.901

F2 0.551 2.401 0.746 0.668 2.321 0.815

F3 0.542 3.264 0.733 0.679 2.216 0.826

F4 0.542 3.216 0.737 0.703 2.032 0.837
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models. The accuracies of the ANN, SVM, GEP, and NLD

models were compared using CC, RMSE, and NSE.

Table 7 presents the training and test results of the Shakkar

watershed. The direct comparison of the results demon-

strated the NLD model outperform the three soft comput-

ing models, this is not surprising owing to the promising

ability in the various literature of hydro-environmental

processes. This can be proved by comparing a visual graph

of radar chart (spider) that indicates the predictive accuracy

in term of CC. The main advantage of the use of a radar

chart is to allow for multivariable quantitative analytics and

to show the highest and lowest values of the variables in

the dataset (Fig. 8).

Even though soft computing model yielded unsatisfac-

tory results in terms of NSE and RMSE but still displayed

the remarkable consideration with regard to CC, it can be

seen that the CC obtained for all the models was found to

be greater than 0.7, which follows to the conclusion

reached by Legates and McCabe, (1999); Pham et al.

(2019) that CC values higher than 0.70 are considered

acceptable; thus the results of all four models are accept-

able (Table 5). A closer investigation of the predictive

results shows that the prediction accuracy was achieved in

the following hierarchical order: NLD[ANN[ SVM[
GEP in both training and testing phases. The following

conclusion can be drawn; NLD is the reliable tool for the

prediction of sediment in Gadarwada gauging station,

secondly, considering the single model’s results and the

variation in the models. It can be inferred that more

experiments are still necessary to develop the level of

agreement between observing and predicting datasets with

other soft computing devices.

Besides the above comparison, the quantitative assess-

ment of the four models was carried in testing phase. From

the assessment, it can be observed that with regard to

goodness-of-fit (NS) NLD model increased the prediction

accuracy of soft computing in the following order: SVM

(27% and 36%), ANN (16% and 28%), and GEP (13% and

34%), in both training and testing, respectively. It is evi-

dent that RMSE range of NLD was found below the range

of 0 while the soft computing was with the range of (1 to

above 3).

In Table 7, it is shown that NLD model acquired the best

CC, RMSE, and NS in the training and testing stages.

Results indicated that the NLD model might provide an

alternative to the ANN, SVM, and GEP models for pre-

dicting sediment yield. Although the AI-based models have

been applied and demonstrated promising application in

(a)  NLD Model

(b)  ANN Model

(c)  SVM Model

(d)  GEP Model

bFig. 6 Distribution graph of observation and calculation values during

calibration stage: a NLD model, b ANN model, C SVM model and

d GEP model
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many fields of scientific research, still there are some

notable challenges that ware attributed to AI-based models.

For example, the main drawback of the ANN algorithm

model is the poor generalization ability, lack of strict

design programs with theoretical foundation, and difficult

to control the training process, and slow convergence and

issues related to inefficiency. While for SVR, the training

data must be manually labelled and the three parameters of

SVR model should be adjusted with previous knowledge

(Pham et al., 2019). On the hand, nonlinear model (GEP)

displayed successful application with high performance

accuracy (Danandeh Mehr et al., 2013). According to

Mehdizadeh et al. (2020), one of the most important of

standalone GEP could be attributed to resolving overfitting

problem.

As the literature review shows, there is no unique model

to be superior to others in all cases and the performances of

different models may be different according to condition of

each hoplological system. Therefore, it is tested and veri-

fied that the combination of outputs (from different mod-

els) through an ensemble method may lead to more

accurate results. The idea of such an ensemble model has

been already used at different fields of engineering, envi-

ronmental and water quality modelling (Abba et al.

2020a, b). It is therefore suggested that in order to improve

the accuracy of the prediction models an ensemble learning

approach should be proposed. Ensemble learning is a

machine learning to combine the process of multiple pre-

dictors in order to enhance the final performance (Abba

et al., 2019; Usman et al., 2020). Ensemble techniques

were proved to produce more accurate results than a single

model. Ensemble techniques have already applied in sev-

eral fields such as web ranking, classification and cluster-

ing, time series, and regression modeling (Kazienko et al.,

2013).

(a) NLD Model

(b) ANN Model

(c)  SVM Model

(d) GEP Model

bFig. 7 Distribution graph of observation and calculation values during

validation stage: a NLD model, b ANN model, C SVM model and

d GEP model

Table 7 Comparative performance of optimal models

Model Training Validation

NS RMSE CC NS RMSE CC

DLN 0.913 0.929 0.958 0.952 0.748 0.975

SVM 0.549 3.480 0.745 0.673 1.961 0.843

ANN 0.632 3.652 0.792 0.784 1.751 0.887

GEP 0.564 2.126 0.761 0.814 1.545 0.901
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4 Conclusions

The prime aim of this research was to predict the daily

sediment yield at Shakkar watershed, Central India, by

employing the NLD, and three different soft computing

techniques i.e., ANN, SVM, and GEP. The prediction

accuracy of these models was estimated using statistical

measures and graphical examination. Daily discharge and

sediment yield data of one-two ahead historical records are

used for the modeling. Different input combinations were

examined on all studied models to select the best scenario

for further analysis. Comparison of the developed models

based on the variety of statistical error measurement indi-

ces showed that the NLD and ANN techniques provide

better performance for estimating the daily sediment yield

and have been performed as the best-ranked 1st and 2nd

models, respectively.

Acknowledgements The Authors extend their thanks to the Deanship

of Scientific Research at King Khalid University for funding this work

through the small research groups under grant number RGP. 1/372/42.

Funding This research work was supported by the Deanship of Sci-

entific Research at King Khalid University under Grant number RGP.

1/372/42.

Declarations

Conflict of interest All authors declare that they have no conflict of

interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Abba SI, Abdulkadir RA, Gaya MS, Saleh MA, Esmaili P, Jibril MB

(2019) Neuro-fuzzy ensemble techniques for the prediction of

turbidity in water treatment plant. 2nd International Conference

of the IEEE Nigeria Computer Chapter. Nigeria Comput Conf

2019:1–6. https://doi.org/10.1109/NigeriaComputConf45974.

2019.8949629

Abba SI, Elkiran G, Nourani V (2020) Non-linear Ensemble

Modeling for Multi-step Ahead Prediction of Treated COD in

Wastewater Treatment Plant. In: Aliev R., Kacprzyk J., Pedrycz

W., Jamshidi M., Babanli M., Sadikoglu F. (eds) 10th Interna-

tional Conference on Theory and Application of Soft Comput-

ing, Computing with Words and Perceptions - ICSCCW-2019.

ICSCCW 2019. Advances in Intelligent Systems and Comput-

ing, vol 1095. Springer, Cham.

Abba SI, Hadi SJ, Sammen SS, Salih SQ, Abdulkadir RA, Pham QB,

Yaseen ZM (2020) Evolutionary computational intelligence

algorithm coupled with self-tuning predictive model for water

quality index determination. J Hydrol 587:124974. https://doi.

org/10.1016/j.jhydrol.2020.124974

Adamowski J, Chan HF (2011) A wavelet neural network conjunction

model for groundwater level forecasting. J Hydrol

407(1–4):28–40

Agarwal A, Mishra SK, Ram S, Singh JK (2006) Simulation of runoff

and sediment yield using artificial neural networks. Biosyst Eng

94(4):597–613

Agarwal BL (2007). Basic statistics. New Age International (P) Ltd.,

Publishers, New Delhi, 763 PP.

Alp M, Cigizoglu HK (2007) Suspended sediment load simulation by

two artificial neural network methods using hydro-meteorolog-

ical data. Environ Modell Softw 22(1):2–13

Anctil F, Michel C, Perrin C, Andréassian V (2004) A soil moisture
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