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Abstract
Soil erosion is one of the major land loss problems in agricultural land and is regarded as a serious environmental hazard

worldwide. This study focused on watershed prioritization using morphometric parameters using Fuzzy Logic (FL),

Interval Rough-Analytical Hierarchy Process (IR-AHP) and Geographic Information Systems (GIS) integration for Gusru

Watershed, India. Fourteen morphometric parameters, including circulatory ratio (Rc), form factor (Rf), elongation ratio

(Re), compactness coefficient (Cc), drainage density (Dd), stream frequency (Fs), texture ratio (T), relief ratio (Rh), relative

relief (Rr), ruggedness number (RN), bifurcation ratio (Rb), average slope (Sa), length of overland flow (Lo), and hypso-

metric integral (HI) were evaluated to determine the erosion susceptibility. Each morphometric parameter was assigned a

weight value by the FL and IR-AHP methods, and mapping and analysis were then carried out in the GIS environment. Our

results showed that the sub-watersheds (SW) 9, 2, and 11 were most susceptible to soil erosion and the sub-watershed 1 was

the least from the viewpoint of soil erosion ranking.
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1 Introduction

Soil erosion is an environmental, economic and social

problem that affects all countries. For sustainable devel-

opment of natural resources to diminish the impacts of

natural calamities, a watershed could be taken as devel-

opmental unit (UNEP 1997). Although a number of factors

are involved in soil erosion, a major agent is the water in

the problem of land deterioration in most parts of the

world. India’s lands are not resistant to this type of natural

hazards, since a total of 147 M ha soil loss were estimated

in the country (Bhattacharyya et al. 2015).

Soil erosion, excess water flow or runoff, changes in

river geometry, degradation of streams, sediment accu-

mulation in river and stream characters are, to some extent,

all water borne natural processes, which are related with

morphometry (Meshram and Meshram, 2020). This clearly

suggests that the morphometry of a basin is fundamental to

the basin hydrology. Nowadays the latest technologies such

as remote sensing (RS) and geographic information sys-

tems (GIS) have been so effectively utilized in the mor-

phometric analyses as the old practices of measuring
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morphometry parameters were very time consuming and

error prone (Gajbhiye et al. 2014a,b; Gajbhiye 2015a, b

a,b; Meshram and Sharma 2017).

Nowadays, multi-criteria decision making (MCDM)

techniques were introduced with various problem solutions

in the complex decision making (Liu et al. 2006; Shih et al.

2007; Chang and Hsu 2009; Chang and Lin 2014; Salehi

and Izadikhah 2014; Kobryń and Prystrom 2015; Mulliner

et al. 2016; Mira et al. 2016; Malekian and Azarnivand

2016; Yu et al. 2017; Shojaie et al. 2017; Raju et al. 2017;

Malekian and Azarniv 2016; Meshram et al.

2019, 2020a, b; Dahmardeh Ghaleno et al. 2020). Smithson

(2012) divided the MCDM method into two categories:

objective and subjective. In the former category, the natural

distribution of the criteria is used to assess their effects on

the study objective. Fuzzy logic (FL) is a commonly used

method in the objective category (e.g., Ozelkanand Duck-

stein 2001; Yu et al. 2004; Suresh and Mujumdar 2004;

Guan and Aral 2005; Yu and Chen 2005; Rao and Srinivas

2006; Chen and Chang 2010; Pourghasemi et al. 2012;

Vahdani et al. 2013; John et al. 2014; Xu et al. 2016;

Nguyen 2016; Danandeh Mehr et al. 2018).Jun et al. (2013)

applied a fuzzy multi-criteria method to demarcate South

Korea’s flood susceptibility maps under the impacts of

climate change. For Hamadan City, the basins were pri-

oritized in accordance of flood intensity using FL technique

(Sepehri et al., 2019). A fuzzy multi-criteria decision

method to demarcate mapping of flood hazard zones of

ungauged and data-scarce regions was developed by

Kanani-Sadat et al. (2019) who considered each weight of

every criterion in the fuzzy logic technique as a function of

inter-criteria. Hence the multi-criteria methods with unique

weights have many criteria due to limitations of inter-cri-

teria dependency, it is then reasonable to ponder subjective

and objective approaches together in the evaluation of

criterion weights of (outer-criteria).

The method of analytical hierarchy process (AHP),

introduced by Saaty (1980), is commonly used in natural

hazard studies in the subjective category in order to

determine the relative weights of parameters. Sepehri et al.

(2017) implemented AHP in Gonbadchi area in Iran for

flood hazard mapping. In the Middle East arid region, a

demarcation of flood zones susceptibility using 10 criteria

(namely, flow accumulation, distance to drainage network,

elevation, LULC, annual rainfall, slope, geology, runoff,

soil type, and drainage density) was evaluated by Mah-

moud and Gan (2018). At this point it is worthwhile to

remind that the task of flood risk mapping has been carried

out using coupled physical hydrologic and hydraulic

models (among others, Şen and Kahya, 2017). Moreover,

the parameters have a weight as per their severity in ana-

lytical hierarchy. From the standpoint of erosion, Meshram

et al. (2019) studied watershed priority ranking using AHP

and Fuzzy Analytical hierarchy.

In mapping flood risk zones, Souissi et al. (2019)

adopted MCDM-AHP using GIS tool using a set of dif-

ferent characteristic parameters (i.e., elevation, land use/-

land cover, lithology, rainfall intensity, drainage density,

distance from the drainage network, slope, and ground-

water depth). Each criterion on relative weight was esti-

mated on the basis of preference whose decision is made

based on the AHP and other subjective approaches.

Therefore, Gigović et al. (2017) and Pamucar et al. (2017)

attempted to decrease this ambiguity considering Interval

Rough Numbers (IRN). In identifying the best priority

areas and landfill sites, Kharat et al. (2016) combined the

following three methods: the fuzzy process, hierarchical

approach and the Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS).

The quantitative relationships between soil erosion

conditioning variables and their spatial distribution have

been evaluated in GIS using fuzzy logic (Hembram and

Saha 2018; Banerjee et al. 2018; Saha et al. 2019; Pilevar

et al. 2020), machine learning approaches (Camilo et al.

2017; Rahmati et al. 2017; Al-Abadi et al. 2017; Con-

oscenti et al. 2018; Ghose and Samantaray 2019; Araba-

meri et al. 2019), the analytical hierarchy process (AHP)

(Svoray et al. 2012; Arabameri et al. 2018a; Das et al.

2020).

Since in AHP and other subjective methods, the relative

weight of the criteria is determined based on the decision

maker’s preferences, it causes high uncertainty in the final

objective of the study. Therefore, in recent years,

researchers have tried to reduce this uncertainty by using

interval rough numbers (IRN) (Gigović et al. 2017;

Pamucar et al. 2017). AHP offers an adaptable, low-cost,

and understandable output for complex decision making

(Saaty 1980).

This study aimed to make a soil susceptibility map of

Gusru river watershed by integrating interval rough AHP

(IR-AHP) and fuzzy logic and using GIS. The novelty of

this work is that it uses IR-AHP and fuzzy logic algorithms

with the morphometric parameter that are most conse-

quential for soil erosion mapping or watershed prioritiza-

tion. Soil erosion susceptibility mapping using IR-AHP and

fuzzy logic has never been conducted in the Gusru River

watershed; therefore, the results provide useful insights for

planners and policymakers who desire to conserve and

manage soil resources.
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2 Materials and methods

2.1 Study area

The study domain (Gusru watershed) is located in the

Madhya Pradesh state lying Satna Panna districts in India,

and is bounded between 80�32050.230 E and 80�37031.140 E
longitude, 24�6032.750 N and 24�16024.070 N latitude

(Fig. 1). It occupies an area of 155 km2 having elevation

range from 339 to 628 m above the mean sea level. The

Gusru River runs from east to west side and confluence

with Tons river at Sagwania village. In the eastern part of

the watershed, there is a small check dam, which primarily

serves as an irrigation outlet. There is no other source of

water for irrigation; as a result, rain-fed agriculture is of

primary practice. The soil structure in the watershed is

mainly comprised of sandy loam. Under rain-fed and irri-

gated conditions, the soils respond to a variety of crops and

watershed management. Shale, sandstone and calcarious

rocks are the dominant lithological units in the watershed.

The study area descends from the plateau of Bhander and

passes through the area between the escarpment of Bhander

and the highlands of Kaimore.

Fig. 1 Location map of the study area
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2.2 Prioritization of watersheds using IR-AHP
and fuzzy logic methods

A brief description of the fuzzy logic (FL) and interval

rough analytical hierarchy (IR-AHP) methods for water-

shed prioritization will be presented in this section.

2.2.1 Fuzzy logic method

Zadeh (1965) introduced fuzzy theory in which fuzzy logic

includes all ideas that use the fundamental principles of

fuzzy sets or functions of membership. The membership

function transfers the values of any parameters in range of

[0, 1] to show the reliability level of parameters in obscure

sets. The value of 0 implies that the desired value is not a

member of the set under consideration whereas the value of

1 set refers to be a full member. On the basis of mem-

bership degree, the remaining values fall between 0 and 1.

A basic problem in the fuzzy logic is the lack of an

optimal method in deciding how to sort in its parameters

and membership function. The role of members is normally

chosen on the basis of preference of decision-makers

(Shahabi et al. 2015). Hence, the inter-weighing of all

successful parameters appears to be more or less identical

in different studies. In this study, the linear membership

function (Eq. 1), one of the widely used membership

functions in natural hazard studies (Ildoromi et al., 2019),

was used to weight the parameters that have a direct rela-

tionship with soil erosion, whereas its inverse form (Eq. 2)

was used to analyze for other criteria,which had an indirect

relationship with the soil erosion.

f x; a; bð Þ ¼

0; x� a
x� a

b� a
; a� x� b

1; b� x

8
>><

>>:

9
>>=

>>;

ð1Þ

f�1 x; b; að Þ ¼ f x; b; að Þ ¼

1; x� a

1� x� a

b� a
; a� x� b

0; b� x

8
>><

>>:

9
>>=

>>;

ð2Þ

where x represents the specific value of the desired criteria

and a and b show the minimum and maximum value of the

desired criterion, respectively.

2.2.2 Interval rough numbers (IRN)

The uncertainty and errors in the data were quantified using

the method of IRN-based rough numbers. A number of

errors and subjectivities can accompany the group deci-

sion-making. In this regard, decision makers face a

dilemma during assigning a certain value to criteria. It is

then presumed that a numerical scale ranging from 1 to 9

must be graded as a function of the decision. Also, assume

that there are three decision makers in the process of

evaluating the criteria on erosion susceptibility (e.g., Rc).

The first decision maker may assume that the initial

importance of Rc criterion on soil erosion varies between 5

to 6 and the second decision maker may think that the

significance of this criterion takes on a value between 6 and

7. Based on his experience, the third decision maker may

consider a value in the range of 6 to 7. Then, we create

attribute values to clarify the described uncertainty using

operations on the rough numbers. Therefore, IRN ([5,

5.67], [6, 6.67]) will define the uncertainty of decision

maker 1. Moreover, these values may be ([5.67, 6], [6.67,

7]) and ([5.67, 6], [6.67, 7]) for the decision makers 2 and

3, respectively (Pamucar et al. 2017).

Considering the novelty of the IRN methodology, there

are few studies regarding the application of IRN in multi-

criteria decision making. Because of its benefits, another

aim in this study is set to promote the use of IRN in multi-

criteria judgment-making.

Supposing that there is a set of k classes that represent

decision maker (DM) preferences (in here are morphome-

tric parameters), R ¼ J1;J2;J3; � � � Jk
� �

, in a situation that

they fit in a series, which fulfills the conditions that

J1\J2\J3\. . .. . .\Jk and there is a another set of m

classes that also stands as DM preferences,

R� ¼ I1;I2;I3;. . .. . .Ik
� �

. All objects areexpressed in the

world and linked with the DM preferences. In R�, each
object class (e.g., Rc) has been shown in the interval

Ii ¼ Ili;Iui
� �

, where the subsequent situation is fulfilled

Ili\Iui(1 B i B m), and also Ili;Iui 2 R. Then, Ili denotes

the lower interval limit, while Iui expresses the upper

interval limit of the ith object class. If both the extremities

of a class of objects (upper and lower limit) are listed in a

way that is I�l1\I�l2\; . . .; I�lj,I
�
u1\I�u2\; . . .; I�uk(1 B j, k

B m), respectively, then, we can define two new sets

containing the lower class of objects R�
l ¼

I�l1;I
�
l2;I

�
l3;. . .. . .I

�
lj

� �
and the upper class of objects

R�
u ¼ I�u1;I

�
u2;I

�
u3;. . .. . .I

�
uk

� �
, respectively. Then, for any

class of objects I�li 2 R (1 B i B j) and I�ui 2 R(1 B i B k),

we can define the lower approximations of I�li and I�ui as

follows:

AprðI�liÞ ¼ [ Y 2 u=R�
l Yð Þ� I�li

� �
ð3Þ

AprðI�uiÞ ¼ [ Y 2 u=R�
u Yð Þ� I�ui

� �
ð4Þ

In the next equations, the upper approximations of I�li
and I�ui are defined as:
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AprðI�liÞ ¼ [ ! 2 u=R�
l !ð Þ� I�li

� �
ð5Þ

AprðI�uiÞ ¼ [ ! 2 u=R�
u !ð Þ� I�ui

� �
ð6Þ

Both the object classes (upper and lower I�li and I�ui) are

expressed with their lower limits Lim I�li
� �

and Lim I�ui
� �

and

upper limits Lim I�li
� �

and Lim I�ui
� �

, respectively:

LimðI�liÞ ¼
1

ML

X
R�

l Yð ÞjY 2 AprðI�liÞ ð7Þ

LimðI�uiÞ ¼
1

M�
L

X
R�

u Yð ÞjY 2 AprðI�uiÞ ð8Þ

where ML and M�
L stands the sum of objects that are

contained in the lower guess of aclass of objects I�li and I�ui,

respectively. Upper limits Lim I�li
� �

and Lim I�ui
� �

are

defined with Eqs. (7) and (8).

LimðI�liÞ ¼
1

Mu

X
R�

l Yð ÞjY 2 AprðI�liÞ ð9Þ

LimðI�uiÞ ¼
1

M�
u

X
R�

u Yð ÞjY 2 AprðI�uiÞ ð10Þ

where Mu and M�
u stands the sum of objects that are

contained in the upper approximation of a class of objects

I�li and I�ui, respectively.

The rough boundary interval for the lower object class I�li
is represented as RB(I�li) and indicates the interval between

the lower and upper limits:

RB I�li
� �

¼ LimðI�liÞ � LimðI�liÞ ð11Þ

While for the upper class of objects, the rough boundary

interval I�ui is calculated as:

RB I�ui
� �

¼ LimðI�uiÞ � LimðI�uiÞ ð12Þ

Then, uncertain object classes I�li and I�ui can be shown

by their lower and upper limits.

RN I�li
� �

¼ LimðI�liÞ;LimðI�liÞ ð13Þ

RN I�ui
� �

¼ LimðI�uiÞ;LimðI�uiÞ ð14Þ

It was observed in each class of objects as distinct by its

lower and upper limits, which makes interval rough num-

ber that is expressed as

IRN I�i
� �

¼ RN I�li
� �

;RN I�ui
� �� 	

ð15Þ

Special arithmetical operations that vary from arithmetic

operations with classic rough numbers are defined by

interval rough numbers.

2.2.3 IR-AHP mathematical model

Saaty (1980) evolved AHP, a method with numerous cri-

teria frameworks for decision making. It was applied in

several policy issues, remarkably in determining index

weighting. This method provides the ability to measure the

stability of decision makers’ preferences in group decision

making and allows manipulating quantitative and qualita-

tive criteria. A final decision to use the AHP method could

be based on the judgment of the decision maker. Hence,

due to the subjectivity and ambiguity that occurs in group

decision making, this study used the combination of IRN

with the AHP method to exploit that mentality. This

combination method can be summarized in five steps as

follows (Gigović et al. 2017; Pamucar et al. 2017):

1: To organize a structure of hierarchical assessment

criteria.In this step, the k experts provide the

hierarchy of the difficultyin which the universal

aim is located on the first level of the hierarchy and

selected criteria are located in lower levels.

2. To fill the paired comparison matrix

After providing a hierarchical structure of evalu-

ation criteria, each expert compares the selected

indices relative to each other as a format of

comparison matrix (Zk). In this context, the experts

use the Saaty’s 9-level linguistic scale (Table 1) to

compare the indices.

Zk ¼

1 xe12; x
e0
12 � � � xe1n; x

e0
1n

xe21; x
e0

21 1 � � � xe2n; x
e0

2n

..

. ..
. . .

. ..
.

xen1; x
e0
n1 xen2; x

e0
n2 � � � 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

n�n

; 1� i; j� e� k

ð16Þ

In the above matrix, xkij and xk
0

ij represent the lower

and upper limit of comparison matrix (each element

of this matrix represents the comparison of criteria

relative to each other (e.g., Rc relative to Rf). If there

exists any uncertainty in expert decisions, they can-

not choose a single value from the Saaty’s 9-level

linguistic scale, where the xkij 6¼ xk
0
ij are established

and vice versa.

3. To establish the weight coefficients of the experts

In subjective methods such as AHP, the consis-

tency of experts’ decision making needs to be

evaluated. In the AHP method, Saaty (1980) intro-

duced the following equation to calculate consis-

tency rate (CR):

CR ¼ CI=RI ð17Þ

CI ¼ Imax � nð Þ
n� 1ð Þ ð18Þ

where CI : the consistency index;: the random index;

Imax: the maximum eigen value of the comparison

matrix; and n: the matrix rank. Such cases where a
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comparison matrix is acceptable are only the con-

sistency rate being equal to or lesser than 0.1. In the

case of the CR values being greater than 0.1, there

exists an inconsistency in the comparison matrix,

implying that a revision in expert decisions is

needed.

4. To generate an averaged interval rough comparison

matrix

The Zk matrices are transferred to sequences

matrices X�L and X�u whose each element indicates

the importance of index i relative to index j. Using

Eqs. 1:14, the elements of X�L and X�u are then

transferred to IRN zijð Þ.

IRN Zij

� �
¼ RN ZL

ij

� �
;RNðZ0u

ij

h i

¼ RN x1Lij ; x
2L
ij ; . . .x

eL
ij

� �
;RN x1

0u
ij ; x2

0u
ij ; . . .xe

0u
ij

� �h i

ð19Þ

RN ZL
ij

� �
¼ RN x1Lij ; x

2L
ij ; . . .:x

eL
ij

� �

¼
ZL

ij ¼
1

m

Xm

e¼1
xeLij

Zu
ij ¼

1

m

Xm

e¼1
xeuij

8
><

>:

9
>=

>;
ð20Þ

RN Z0u
ij

� �
¼ RN x1

0u
ij ; x2

0u
ij ; . . .:xe

0u
ij

� �

¼
ZL

ij ¼
1

m

Xm

e¼1
xe

0L
ij

Zu
ij ¼

1

m

Xm

e¼1
xe

0u
ij

8
><

>:

9
>=

>;
ð21Þ

where e is the number of experts (e = 1: m). In the

pairs of evaluation parameters, the matrix Z
expressing the average interval rough comparison

matrix is estimated as follows:

Z ¼

1 IRNðZ12Þ � � � IRNðZ1nÞ
IRNðZ21Þ 1 � � � IRNðZ2nÞ

..

. ..
. . .

. ..
.

IRNðZn1Þ IRNðZn2Þ � � � 1

2

6
6
6
4

3

7
7
7
5

ð22Þ

5. To calculate the priority criterion vector

For each n evaluation criterion, the priority

criterion vector,IRNðwiÞ, is calculated based on the

following equations:

IRN wij

� �
¼ wL

ij ;w
u
ij

h i
; w

0L
ij ;w

0u
ij

h i� �
¼

IRN Zij

� �

Pn
j¼1 IRN Zij

� �

¼
ZL

ij ;Zu
ij

h i
; Z0L

ij ;Z
0u
ij

h i� �

Pn
j¼1ZL

ij ;
Pn

j¼1Zu
ij

h i
;
Pn

j¼1 Z
0L
ij ;
Pn

j¼1Z
0u
ij

h i� �

ð23Þ

Rough interval weight coefficients can be readily cal-

culated as:

IRN wið Þ ¼
Xn

j¼1

wL
ij ;
Xn

j¼1

wu
ij

" #

;
Xn

j¼1

w
0L
ij ;
Xn

j¼1

w
0u
ij

" # !

=n

ð24Þ

2.2.4 Weighted overlay method (WOM)

After assigning the weights to criteria either by inter-cri-

teria (i.e., fuzzy logic) or by outer-criteria (IR-AHP),

WOM was used for combining these criteria and preparing

soil erosion susceptibility maps. The replacement property

is one of the most significant characteristics in this proce-

dure (Raj and Shaji 2017; Thapa et al. 2017).Using this

characteristic, another criterion that has a higher score will

replace a criterion that has a lower score. The WOM

method can be mathematically represented for integrating

the parameters as follows:

Final weight ¼
X

xiwi ð25Þ

where wi is the weight of inter-criterion of the i index, and

xi is the weight of outer-criterion of the i index.

Table 1 Saaty’s 9-level linguistic scale

Preference factor Degree of preference Explanation

1 Equally Two factors contribute equally to the objective

3 Moderately Experience and judgment slightly to moderately favor one factor over another

5 Strongly Experience and judgment strongly or essentially favor one factor over another

7 Very strongly A factor is strongly favored over another and its dominance is showed in practice

9 Extremely The evidence of favoring one factor over another is of the highest degree possible of an affirmation

2,4,6,8 Intermediate Used to represent compromises between the preferences in weights1, 3, 5,7and 9

Reciprocals Opposites Used for inverse comparison
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2.3 Methodology

The first task is to set relevant morphometric criteria prior

to soil erosion susceptibility mapping. Next, we first

employed the fuzzy logic for the inter-criteria weighting,

and then, the IR-AHP method for the outer-criteria

weighting. Having the inter- and outer-criteria weight

combination prepared, the soil erosion susceptibility map is

finally graded into the areas of susceptibility to soil ero-

sion. A flowchart of stages in our analysis is presented in

Fig. 2.

2.3.1 Erodibility and mapping

Stream network is the basis of any morphometric study and

their by prioritization of watershed digital elevation model

(DEM) (with a resolution of 30 m) generated by Shuttle

Radar Topography Mission (SRTM) data is a common tool

to define a stream network and sub-watershed (SW) map.

Different drainage network parameters (i.e., numbers &

lengths) and watershed area, perimeter, width and length

were determined in the GIS environment. In addition, the

stream frequency, drainage density, circulatory ratio, form

factor and elongation ratio were estimated using standard

pertinent formulas. In order to do IR-AHP and fuzzy logic

analysis, we have adopted the morphometric parameters for

the 14 sub-watershed of Gusru watershed from the previous

studies of Sharma et al. (2011).

In the first stage, we calculated morphometric parame-

ters in each sub-watershed, and then compared. Then, the

array of liking of sub-watersheds was estimated by the IR-

AHP and fuzzy logic. Fourteen morphometric parameters

were complied with respect to the sub-watershed scale for

priority ranking in the study area.

2.3.2 Assigning weights and ranking criteria

In this analysis, the weights of parameters (inter-criteria

and outer-criteria) were determined applying the fuzzy

logic and IR-AHP methods based on knowledge-based

approach. Scopes of the criteria which are dissimilar were

eliminated using the fuzzy logic and the function and sig-

nificance of the values of each criterion were specified in

the sense of soil erosion. The IR-AHP, which is integrated

with AHP approach, facilitates to eliminate the bias and

ambiguity in the group judgment-making. This strategy

may be perceived as a safer way in reducing the complexity

of prioritizing watersheds.

3 Results and analysis

3.1 Morphometric analysis

A morphometric study should start with delineation of

stream and their designation by any approach introduced

Fig. 2 Flowchart of the research
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by Horton, Hargriv or Strahler. Therefore, stream ordering

in our 14 sub-watersheds was referenced to the approach of

Strahler (1964) in this study (Fig. 1).

3.2 Basic parameters

The watershed area, perimeter, width, stream number and

length were all estimated using GIS technique and depicted

in Fig. 3 and Table 2. It is evident that the SW 2 is the

smallest one covering an area of 7.785 km2 whereas the

SW 8 has the largest area (14.723 km2) among all the sub-

watersheds. The length of watershed varies from 4.09 km

(SW 7) to 5.91 km (SW 5).

3.3 Shape Parameter

Runoff characteristics (i.e., streamflow hydrograph) are

influenced by the shape of watershed and can be evaluated

through the circulatory ratio, form factor, and elongation

ratio. These metrics of watershed revealed that the SWs 1,

6, 9, 10, 13, and 14 are elongated in shape, whereas the

SWs 3, 4, 5, 7, and 11 are less elongated, and the SWs 1, 8

and 12 have an oval shape (Table 2). In the elongated basin

hydrograph of stream flow or discharge takes smooth shape

which explains that the longer time will be taken by water

from most remote point of watershed to its outlet. In case

of oval and less elongated basins water comes to outlet

very fast and less time as compared to elongated basins

which causes excessive peak value. For SW 12 and 14

compactness coefficient values are 1.149 and 1.430

respectively, which explains that SW 14 is more compact

then SW 12.

3.4 Drainage Parameters

Among the linear parameters, the drainage density is very

important parameter and has a relative links with stream

length and watershed area. Figure 3 and Table 2 show

drainage densities of sub-watersheds in Gusru watershed in

which SW 14 possesses the highest value (Dd = 4.994 km/

km2) whereas SW 6 has the lowest drainage density value

(Dd = 2.454 km/km2). The majority of sub-watersheds 1–5

and 7–13 have the Dd value in the same ranges. Sub-wa-

tershed 6 has permeable conditions of sub soil strata indi-

cated by its low Dd value. Among the sub-watersheds of

the study area the sub-watershed 14 having the highest Dd
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Fig. 3 Initial value combination

of morphometric parameters

and their fuzzy values

304 Stochastic Environmental Research and Risk Assessment (2022) 36:297–312

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



value which means this watershed has well developed

stream network. This well developed stream network

shows high elevation, scattered vegetation and substrata

have fragile material in that watershed (Nautiyal 1994).

SW 6 & 5 has stream frequency 3.817 and 8.016 num-

ber/km which shows the watershed with maximum stream

frequency has well developed stream network and more

important implication on severe soil erosion in the water-

shed. The intensity of erosion in a watershed increases with

the stream frequency, which is positively correlated with

the drainage density. Texture ratio (T) of all sub-water-

sheds ranged from 2.859 (in the SW 6) to 6.270 (in the SW

5).

3.5 Slope parameters

The difference of elevation in most remote point of

watershed and its outlet is known as total relief (H) that

ranged between 90 and 227 m in all the sub-watersheds of

the Gusru watershed. Rate of runoff water and sediment

volume depends on the relief ratio as this parameter pro-

vides the potential energy to these factors in the study area

its range varies from 0.019 to 0.047 (SW 1 & 11). The

range of relative relief (Rr) was between 0.006 (SW 1) and

0.017 (SW 9). Ruggedness number (RN) was estimated as

0.304 for sub-watershed 1as being the lowest value and

1.134 for SW 14 as being the highest value in this study.

More RN value shows the more roughness of watershed and

as a consequence more soil loss. Slope range in Gusru river

watersheds was observed between 7.089% (SW 1) and

20.416% (SW 13). Sub-watersheds 2, 4, 9, and 11 are

inequilibrium/youthful stage, and sub-watersheds 1, 3, 5, 6,

7, 8, 10, 12, and 13 are in equilibrium/mature stage, and

finally sub-watershed 14 in monodnock stage.

3.6 Erodibility criteria for sub-watershed
prioritization by fuzzy logic and IR-AHP
models

The main features of this approach are its consistency and

applicability with an emphasis on watershed prioritization

criteria. The MCDM method is often used in ranking,

accepting, rejecting, and evaluating the number of opti-

mum choices. As each being an MCDM method in

weighting criteria procedure, both IR-AHP and fuzzy logic

methods were employed in this study.

3.6.1 Inter-criteria weighting (Fuzzy logic)

The form factor (Rf), which is defined by dividing the sub-

basin area by the longest length of drainage network has an

inverse relationship with soil erosion in such a way that the

phenomenon of sedimentation dominates soil erosion in

long-narrow watersheds. The value of Rf in all sub-water-

sheds, which varies between 0.591 (SW 8) and 0.315 (SW

13), was therefore transferred between 0 (SW 8) and 1 (SW

13). The relief ratio (Re) like Rf has an inverse relationship

with soil erosion. For small values of Rf, the case study has

a high relief and steep ground slopes and therefore it has

more susceptibility to soil erosion. Using Eq. 2, the values

of 0 and 1 were assigned to SW 8 (0.868) and SW 13

(0.634), which are the maximum and minimum values of

Re, respectively. Once the parameters of circulatory ratio

and compactness coefficient (Rc and Cc) are related to

watershed penetration capacity, they are negatively corre-

lated with soil erosion. In this context, Eq. 2 was used to

assign inter-criteria weighting to Rc and Cc.

Bifurcation ratio (Rb) having a relation with the water-

shed structure complexity is affected by geological,

Table 2 Sub-watershed wise morphometric parameters

Sub-watershed Rh Rr RN Rb Dd Fs Rc Rf Re T Lo Cc Sa HI

1 0.019 0.006 0.304 3.889 3.372 6.264 0.651 0.530 0.822 4.902 0.148 1.239 7.089 0.410

2 0.023 0.008 0.425 4.115 3.293 6.165 0.564 0.340 0.658 4.275 0.152 1.331 9.275 0.700

3 0.025 0.008 0.409 3.521 3.199 5.299 0.573 0.433 0.743 3.776 0.156 1.321 8.121 0.560

4 0.032 0.011 0.499 3.833 3.328 6.663 0.654 0.490 0.790 4.928 0.15 1.236 13.524 0.670

5 0.032 0.010 0.670 3.646 3.488 8.016 0.531 0.414 0.726 6.270 0.143 1.372 12.89 0.520

6 0.022 0.008 0.312 3.643 2.454 3.817 0.56 0.370 0.686 2.859 0.204 1.335 7.467 0.540

7 0.032 0.010 0.420 3.417 3.180 5.700 0.561 0.472 0.775 3.385 0.157 1.335 8.680 0.510

8 0.042 0.012 0.763 3.681 3.670 7.335 0.582 0.591 0.868 6.058 0.136 1.311 20.115 0.560

9 0.046 0.017 0.827 3.705 3.334 6.284 0.631 0.356 0.673 4.495 0.15 1.259 17.845 0.610

10 0.024 0.008 0.462 4.005 3.421 7.426 0.494 0.363 0.680 5.013 0.146 1.422 9.998 0.420

11 0.047 0.015 0.742 3.208 3.285 5.598 0.606 0.473 0.776 4.092 0.152 1.284 14.566 0.750

12 0.044 0.015 0.684 3.113 3.319 6.268 0.758 0.513 0.809 5.217 0.151 1.149 22.295 0.450

13 0.038 0.014 0.737 3.495 3.899 7.322 0.513 0.315 0.634 4.130 0.128 1.395 20.416 0.360

14 0.046 0.015 1.134 3.759 4.994 7.785 0.489 0.381 0.696 4.671 0.1 1.430 11.553 0.230
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climate, topographical, and ecological watershed factors.

This ratio for sub-watersheds changes between 3.113 (SW

12) and 4.113 (SW 2). As reported by Meshram et al.

(2020a,b) some parameters like average slope of water-

shed, bifurcation ratio, hypsometric integral, and rugged-

ness number, length of overland flow, relative relief, relief

ratio, drainage density, stream frequency and texture ratio

have a direct relationship with soil erosion. Therefore,

Eq. 1 has been utilized to assign inter-criteria weighting to

this index (Fig. 3). Drainage density (Dd) is a representa-

tion for vegetation cover and relief rate. In areas with lower

Dd, there is good vegetation cover and low relief and vice

versa. In our study, SW 14 and 6 were found to have the

maximum and minimum rates of Dd, respectively. Equa-

tion 1 was once again used in identifying inter-criteria

weighting (Fig. 3).The length of overland flow (Lo) is also

a vital indices affecting physiographic and hydrological

features of the watershed. The higher value of this index is

related to mild slopes and vice versa. SW 6 has a maximum

value (0.204) of Lo, being most susceptible to erosion,

whereas sub-watershed 14 (1) has a minimum value of Lo,

being least susceptible to soil erosion. Here, Eq. 1 was used

to determine the inter-criteria of Lo (Fig. 3).

One of the important geometric indices which are used

to determine the erosion potential of streams is related to

ruggedness number (RN). This index has a positive corre-

lation with soil erosion. Equation 1 was used to determine

the inter-criteria of RN (Fig. 3).The relief ratio and relative

relief (Rh and Rr) are main hydrological indices which are

dependent on the slope of drainage network. In this study,

sub-watersheds 9 and 1 have the maximum and minimum

values of Rh and Rr, respectively. Since these indices have

a direct relationship with soil erosion, Eq. 1 was used to

transfer their values to range of 0 to 1 (Fig. 3). Stream

frequency, average slope, and hypsometric integral

parameters (Fs, Sa, and HI) represent the roughness coef-

ficient in a watershed and higher values of these indices

indicate that the watershed has low permeability. As these

parameters have a positive relationship with soil erosion

and, in this study, their inter-criteria weighting was

assigned by Eq. 1 (Fig. 3).

In the case study, a scale ranging from 1 to 14 was used

for assigning a primary score to the 14 morphometric

parameter based on their role on soil erosion. The score 1

means that the lowest impact on soil erosion and number

14 means the most impact on soil erosion. a map was

generated in which the higher the values, the stronger their

effect is on soil erosion, and vice versa (Fig. 3). Finally,

Eq. (1) was used for inter-weighting this criterion.

3.6.2 Outer-criteria weighting (IR-AHP)

The inter-criteria weighting was used to remove the

dimensions of indices and assign initial weights to values

of each index without considering other indices. It is

obvious that each index relative to other indices has a

different role and importance in the degree of erosion. To

do this, three experts were selected to specify the relative

importance of indices in the format of comparison matrix

(Table 3) whose values bring about uncertainty in experts’

decisions. For example, the expert is in a dilemma to

choose the values between 3 and 4 in the comparison

matrix of expert 1 in array Rc-Rb (Table 4). Having

acquired the comparison matrixes, the next step is to cal-

culate the final consistency ratio of each matrix, which is

the average of consistency ratio (CR) of lower (CRe) and

upper (CRe’) limit of that matrix (Table 4). Since the final

value of consistency ratio for each expert is lower than 0.1,

they can be used to determine the final weights of erosion-

related indices. Using Eqs. 3–15, the comparison matrices

(Zk) (Table 5) were transferred to averaged interval rough

comparison (Table 5). After calculating IRN zijð Þ, the pri-

ority criteria vector (Table 6) and rough interval weights

coefficients (Fig. 4) were calculated through Eqs. 23 and

24.

Following the assessment of weights of criteria by inter-

criteria (i.e. fuzzy logic) and outer-criteria (IR-AHP),

weighted overlay method (WOM) was used for a combi-

nation of these criteria and to prepare the soil erosion

susceptibility map (Fig. 5).

4 Discussions

The employed methodology’s main characteristics are its

simplicity and adaptability, with an emphasis on the cri-

teria for controlling water routing when the peak exceeds

the drainage network capacity. MCDM is commonly used

for ranking, accepting, rejecting, and finding the number of

ideal options (Fernández and Lutz 2010). IRAHP and fuzzy

logic were utilized as two MCDA approaches for criteria

weighting in this study.

According to the literature review, no unique MCDM

model is superior to others in all circumstances, and the

performance of different MCDM models varies depending

on the condition of each hydrological system. As a result, it

has been tested and shown that using an MCDM method to

combine outputs (from different models) can lead to more

accurate findings (Meshram et al. 2021). The concept of an

MCDM model like this has already been applied in envi-

ronmental (Soltani et al. 2015; Zavadskas et al. 2015),

quality management (Lupo, 2015), GIS (Latinopoulos and

Kechagia, 2015), safety and risk management
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(Ilangkumaran et al. 2015), operation research and soft

computing (Angilella and Mazzù, 2015; Zhu et al. 2015;

Chen, 2015; Roszkowska and Wachowicz, 2015). As a

result, it is advised that a fuzzy technique be proposed in

order to increase the accuracy of the prediction MCDM

models. The results of fuzzy approaches were shown to be

more accurate than those of an MCDM model.

Several studies have used fuzzy sets for soil erosion

studies (Al-Abadi et al. 2017; Saha et al. 2019; Pilevar

et al. 2020). The fuzzy set method has several advantages,

including (i) converting all data to a range of 0–1 using

fuzzy membership functions as an excellent mechanism for

solving different magnitudes at different data layers, and

(ii) accurately assessing soil erosion for watershed priori-

tization using a different morphometric parameter.

The difference in soil erosion sensitive zones between

this study and other studies (Le Cozannet et al. 2013;

Pradeep et al. 2014; Vijith and Dodge-Wan 2019; Meshram

et al. 2020a,b; Alvandi et al. 2021) is one of the most

significant differences. Some studies, for example, may

over- or under-estimation soil susceptibility based on their

criterion weighting approach, resulting in erroneous soil

erosion susceptible mapping precision.

Table 3 Pairwise comparison matrices of experts

Rh Rr RN Rb Dd Fs Rc Rf Re T Lo Cc Sa HI

Expert 1

Rh (1,1)

Rr (1,2) (1,1)

RN (3,3) (1,2) (1,1)

Rb (3,4) (2,3) (2,3) (1,1)

Dd (4,5) (3,4) (3,4) (2,3) (1,1)

Fs (3,4) (4,5) (1,2) (1,2) (1,2) (1,1)

Rc (4,5) (3,4) (2,3) (3,4) (2,3) (2,3) (1,1)

Rf (3,4) (4,5) (4,5) (3,4) (3,4) (1,2) (2,3) (1,1)

Re (1,2) (3,4) (2,3) (2,3) (2,3) (2,3) (1,2) (2,3) (1,1)

T (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,1) (2,2) (2,2) (1,1)

Lo (4,5) (3,4) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (1,1)

Cc (3,4) (4,5) (3,4) (1,2) (3,4) (1,2) (2,3) (2,3) (2,3) (2,3) (3,4) (1,1)

Sa (2,3) (2,3) (2,3) (2,3) (2,3) (2,3) (2,2) (1,2) (1,2) (1,2) (1,3) (1,3) (1,1)

HI (6,7) (5,6) (6,7) (4,5) (3,4) (6,7) (6,7) (5,6) (6,7) (7,8) (5,6) (5,6) (6,7) (1,1)

Expert 3

Rh (1,1)

Rr (1,1) (1,1)

RN (3,5) (1,5) (1,1)

Rb (3,4) (2,2) (1,2) (1,1)

Dd (4,5) (3,3) (2,3) (2,2) (1,1)

Fs (3,4) (4,4) (1,1) (1,1) (1,1) (1,1)

Rc (4,5) (3,3) (2,2) (3,4) (2,2) (2,2) (1,1)

Rf (3,4) (4,4) (4,5) (3,3) (3,4) (1,1) (2,2) (1,1)

Re (1,1) (3,4) (2,2) (2,2) (2,3) (2,2) (1,1) (2,3) (1,1)

T (1,1) (1,1) (1,1) (1,2) (1,1) (1,1) (1,1) (2,3) (2,2) (1,1)

Lo (4,5) (3,3) (2,2) (2,2) (2,3) (2,2) (2,2) (2,2) (2,2) (2,3) (1,1)

Cc (3,5) (4,4) (3,4) (1,1) (3,3) (1,1) (2,2) (2,2) (2,2) (2,2) (3,3) (1,1)

Sa (2,3) (2,2) (2,2) (2,3) (2,2) (2,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

HI (6,6) (5,5) (6,7) (4,5) (3,4) (6,6) (6,7) (55,) (6,6) (7,8) (5,6) (5,5) (6,7) (1,1)

Table 4 CR for comparison

matrices
Expert CRe CRe0 CR

1 0.067 0.099 0.083

2 0.068 0.096 0.082

3 0.097 0.099 0.098
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Because the use of subjective approaches (AHP) alone

for soil erosion mapping has some limits in terms of

weighting indices, it is important to divide the criterion into

subclasses and then assign initial weights to these sub-

classes. This reduces the variability of spatial distribution

of criteria, resulting in rigid prioritization maps. The inte-

gration of fuzzy logic and the IR-AHP approach as

objective and subjective methodologies was utilized to

solve this problem in this study.

5 Conclusion

Soil erosion is one of the major land loss problems in

agricultural lands and is regarded as a serious environ-

mental hazard worldwide. In the present study, fourteen

most effective morphometric parameters were selected in

soil erosion evaluation. These parameters were weighted

on the basis of their effects on erosion using subjective (IR-

AHP) and objective (fuzzy logic) methods. Finally, the

weighted criteria were overlaid to have soil erosion map of

the study area. The following conclusions can be drawn

from this study:

1 Sub-watersheds 14, 2, and 11 have most susceptibility

to soil erosion.
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Fig. 4 Rough interval weights

coefficients

Fig. 5 Soil erosion

susceptibility map
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2 Sub-watershed 1has least susceptibility to soil erosion.

It was shown that the integration of AHP- Rough and

fuzzy logic can be a powerful tool to investigate soil

erosion.

The interval rough approach is valid in other areas of

MCDM. Further implementation of the interval rough

method in conjunction with established decision-making

models would significantly reduce the complexity and

subjectivity prevalent in decision-making, in particular in

group judgment-making.

The drainage network is most important geomorphology

feature of watershed which effect on soil erosion. There-

fore, the accurate evaluation of drainage network feature

has a main role on the accuracy of the desired output. In the

current study, the main concentration of authors was on the

simple properties of drainage network i.e. length of drai-

nage network or the number of it. Therefore, in future

studies in order to have more accuracy of soil erosion

mapping, it is necessity to consider drainage network

irregularity property such as Fractality or entropy of drai-

nage network. Regarding using methodology, it can be said

that the core of the used methodology in the current study

was AHP. One the main weakness of the AHP is the lots

number of paired comparisons, causing uncertainty in

produced desired output such as soil erosion mapping.

Therefore, it is suggested that in the future, the authors

used new methods which reduce the number of paired

comparisons such as Best Worst Method (BWM) or Full

Consistency Method (FUCOM) as two the newest subjec-

tively MCDM methods which dramatically reduce the

number of paired comparisons and the uncertainty in the

produced maps.
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purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial. 
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply. 
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy. 
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not: 
 

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.
 
In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository. 
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved. 
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose. 
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties. 
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at 
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