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Abstract 
The application of Artificial Intelligence (AI) techniques has become popular in science and engineering applications since the 
middle of the twentieth century. In this present study, three AI techniques (ANFIS, GP and ANN) have been used for forecast-
ing streamflow into Shakkar watershed (Narmada Basin), India. The models have been used considering previous streamflow 
and cyclic terms in the input vector to provide a suitable time series model for streamflow forecasting. To evaluate the model 
performance, RMSE, MAE, CORR and CE were employed. Results showed that the ANFIS has the best performance in fore-
casting streamflow time series for Shakkar watershed. The GP and ANN are in the 2nd and 3rd ranks, respectively. According 
to the results, in all the AI methods (ANFIS, GP and ANN), the model with cyclic terms had better performance compared to 
those models not considering periodic nature and being applied by only considering the previous streamflow.
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1 Introduction

Forecasting of river flow and reservoir inflow plays a fun-
damental part in water resources management as one of the 
most challenging tasks in the area of hydrology. Forecast-
ing is useful for a better management in reservoir operation, 
water optimization and allocation, hydropower generation, 
supplying water to industry, agriculture or municipality, and 
drought management, and is a necessary tool for an accurate 
and reliable streamflow forecasting (Meshram et al. 2019a, 
b). Reliable forecasting of streamflow at different time scale 
can considerably enhance the ability to predict the availabil-
ity of water in the future. Recently, many researchers have 
paid much attention to hydrologic time series forecasting. 
Consequently, during the last decade, various models have 
been proposed in order to predict hydrologic time series. 
According to Wang et al. (2009), these models could be 
represented by three groups as follows: time series models, 
regression-based methods, and AI based models. The autore-
gressive moving-average models (ARMA) (Box and Jenkins 
1970) have been extensively applied to model hydrological 
time series in the last few decades. ARIMA is another popu-
lar model, which has also been widely used by researchers 
(e.g., Salas 1993; Toth et al. 2000; Srikanthan and McMa-
hon 2001); Artificial intelligence (AI) models such as fuzzy 
inference systems (FIS), support vector machine (SVM), 
artificial neural networks (ANN), genetic programming (GP) 
and wavelet-artificial neural network (WANN) have recently 
attracted the attention of research for forecasting the hydro-
logical variables. ANNs have been assessed successfully in 
different fields of hydrologic modeling, especially stream-
flow prediction (Nourani et al. 2012; Abrahart et al. 2012; 
Mugumo 2012; Valipour et al. 2013; Santos and Silva 2013; 
Farias et al. 2013; Santos et al. 2019; Freire et al. 2019; Hon-
orato et al. 2019; Ghorbani et al. 2020; Khatibi et al. 2020; 
Meshram et al. 2021a, b; Saraiva et al. 2021). Moreover, 
fuzzy logic and fuzzy set theory-based approaches proposed 
by Zadeh (1965) has been widely applied in hydrological 
modeling (Shiri and Kisi 2010; Lohani et al. 2006, 2012; 
Goyal et al. 2013). Genetic programming have been also 
used during recent years in a variety of hydrological appli-
cations for predicting and simulating the hydrological pro-
cesses and water resources management (Dorado et al. 2003; 
Alavi et al. 2008). Wang et al. (2009) used ANN, neural-
based fuzzy inference system (ANFIS), genetic programing 
(GP) and support vector machine (SVM) using long-term 
observations in China for monthly inflow forecasting. The 
results showed that ANFIS, GP and SVM presented the best 
performances according to different criteria for evaluation. 
Londhe and Charhate (2010) applied GP, ANN and model 
trees (MT) for streamflow forecasting one-day ahead for two 
stations in Narmada River basin, in India. Their obtained 

results suggested that the MT and ANNs techniques pre-
sented almost the same performance; however, the GP 
showed better performance. On the other hand, Nayak et al. 
(2004) assessed the neuro-fuzzy approach to predict stream-
flow time series, and Rasouli et al. (2012) applied SVM for 
daily streamflow forecasting using various meteorological 
variables and large-scale climate indices in British Colum-
bia, Canada, and found out that the SVM model provides 
good performance criteria for modeling daily streamflow. 
Guven (2009) used linear genetic programming (LGP), 
which is a type of the GP, and two ANN to predict daily 
streamflow in Schuylkill River, located in the USA, and 
concluded that the LGP satisfactorily performed better than 
ANN methods. AR, ANN and ANFIS models were applied 
by Lohani et al. (2012) to forecast reservoir inflow. They 
included cyclic terms in the ANN and ANFIS for consider-
ing the effect of monthly periodicity on the flow data. The 
results revealed that the ANFIS provides more accurate fore-
casting than the AR and ANN models. Moreover, Danandeh 
Mehr et al. (2013), using linear genetic programming (LGP) 
and a neuro-wavelet technique for streamflow forecasting, 
also found that LGP performed better than WANN among 
the analyzed models.

The river streamflow has undergone changed due to the 
climate change phenomenon, which has also caused recent 
droughts and diminished water resources. Therefore mod-
eling the streamflow is vital to developing successful water 
resources policies and management. In this study, ANFIS, 
ANN and GP models are applied to forecast monthly stream-
flow in the Shakkar watershed (Narmada Basin), India. In 
addition, cyclic terms are often considered in AI models 
(e.g., ANFIS, ANN and GP) used to assess the impact of 
monthly periodicity on streamflow data.

2  Description of Selected AI Models

2.1  Adaptive Neural‑based Fuzzy Inference System

Zadeh (1965) first published the fuzzy logic and fuzzy set 
theory, when presented a fuzzy set as a class of objects 
based on a continuum of grades of membership. The 
fuzzy-rule based modeling is a scheme based on a quali-
tative modeling and the system is represented as a natural 
language. It is worth noting that the Fuzzy Inference Sys-
tem (FIS) can be expressed as the key unit of a fuzzy logic 
system to model imprecise or even linguistic information. 
FIS is also called fuzzy rule-based system, which is being 
applied to a large variety of situations concerning uncer-
tainty and vagueness (Zimmermann 1996). In general, 
fuzzy inference system consists by the following func-
tional components: (i) the rule base, which contains the 
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fuzzy IF–THEN rules; (ii) the database, which is formed 
by the membership functions of the fuzzy sets applied in 
the fuzzy rules; (iii) the decision-making unit, which oper-
ates the rules; (iv) the fuzzification interface unit, which 
transforms the crisp quantities into fuzzy quantities; and 
(v) the defuzzification interface unit, which is intend to 
transform the fuzzy quantities into crisp quantities.

According to Jang (1993) and Reddy (2006) the ANFIS 
architecture basically is formed by five layers, which are 
composed by nodes, i.e., input nodes, rule nodes, average 
nodes, consequent nodes, and output nodes. These layers 
are designed as premise part, implication, normalization, 
consequent part, and output, whose functionalities are 
briefly described as follows:

Layer 1 computes the membership grades. Each node i in 
this layer generates a membership grade for which are belong 
to appropriate fuzzy sets using membership functions.

where Q1

i
 is the membership function of fuzzy sets Ai and 

Bi; x, y are the crisp inputs to node i; and Ai and Bi are the 
linguistic labels (short, long etc.) which are respectively 
characterized by suitable membership functions, μAi and μBi. 
Any continuous and piecewise differential functions such 
as triangular or trapezoidal membership functions could 
be used. In water resources fields, these are the most used 
membership functions. However, due to the smoothness and 
concise notation, the bell shaped and Gaussian membership 
functions are popular for specifying fuzzy sets. In the pre-
sent study, the bell shaped membership function is used, 
which is given as:

in which ai, bi, and ci are the parameters set of the mem-
bership functions in the premise part of fuzzy if–then rules 
that changes the shapes of the membership function. As 
the first layer belongs to premise part, parameters in this 
layer are pointed as premise parameters.

Layer 2 combines the membership grades of layer 1 to 
form the firing strengths. The T-norm operator is adopted 
for implication of the rules. Such an operator multiplies the 
incoming signals and produces one single output, which 
represents the firing strength (antecedent part) for that rule.

(1)Q1

i
= �Ai

(x) for i = 1, 2

(2)Q1

i
= �Bi−2

(y) for i = 3, 4
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Firing strength gives the degree to which the anteced-
ent part of a fuzzy rule is satisfied, and it shapes the output 
function for the rule.

Layer 3 normalizes the firing strengths. In this layer, the 
ith node calculates the ratio of the ith rule’s firing strength 
to the sum of firing strengths of all rules. The normalized 
firing strength is given as:

Layer 4, based on the node function, computes the contri-
bution of the ith rule towards the total output, expressed as:

in which wi is the ith node output from the previous layer; 
{pi, qi, ri} are the coefficients of the consequent part and are 
also known as the consequent parameters.

Layer 5, according to the single node, computes the over-
all output by summing up all the incoming signals.

In this method, the modifiable parameters in layer 1 deter-
mine the shapes and positions of membership functions, and 
those in layer 4 specify the output linear equation of each 
rule. In layer 1, all the parameters have nonlinear behav-
ior, so it requires a nonlinear optimization technique, and 
in layer 4, all the parameters are linear in nature, and any 
traditional or advance optimization technique can be used 
(Reddy 2006).

2.2  Artificial Neural Networks (ANN)

Artificial neural networks (ANN) have been developed as 
generalizations of biological nervous systems for mathemati-
cal models (Haykin 1999). Usually, an ANN is based on 
three layers, in which the input layer the data are introduced 
to the network, then there is one or more hidden layers, in 
which the data are processed to finally proceed to the out-
put layer, when the final results are obtained (Freire et al. 
2019). Formally, the neurons within the layers are connected 
either as feedforward or recurrent networks. In feedforward 
networks, neurons are arranged in many layers, and the 
information flows only in one direction. The flow direc-
tion is from the input layer to output layer. The neurons are 

(5)
Q2

k
= wk = �Ai

(x) ∗ �Bj
(y) for k = 1, 2, 3, 4; i = 1, 2; j = 1, 2

(6)
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arranged in one or more layers and feedback is implemented 
either internally in the neurons to other neurons within the 
same layer or to neurons in the preceding layers (Hsu et al. 
1995; Honorato et al. 2019). Usually the neural networks 
are represented as a three layered feed-forward network 
because they can be easily applied to several types of prob-
lems (Lohani et al. 2012).

2.3  Genetic Programing

Genetic programing is a technique of evolving programs, 
starting from a population of unfit random programs, fit for a 
specific task. Genetic programing applies operations similar 
to natural genetic processes to the population of programs, 
and automatically solves problems with no need to specify 
the structure of the solution in prior (Danandeh Mehr 2013). 
Differently from statistical techniques such as decision trees, 
ANN and others, genetic programing is an automatic param-
eterizing which, with no need of user tuning, builds models. 
The main inputs for the genetic programing model are (i) 
patterns for learning, (ii) fitness function, (iii) functional and 
terminal set, and (iv) parameters for the genetic operators, 
e.g., crossover and mutation probabilities (Sreekanth and 
Datta 2011). Usually, genetic programing solves any prob-
lem based on the following stages: (i) generation of an initial 
population (computer programs) randomly by the functions 

and terminals of the problem; (ii) execution of each program 
with certain fitness value; (iii) creation of a new population 
of computer programs based on reproduction, mutation and 
crossover operators; (iv) comparison of new fitness values, 
and (v) selection of the best computer program (Danandeh 
Mehr 2013).

3  Materials and Methods

3.1  Study Area and Data Description

The present study was conducted in Gadarwada gauging sta-
tion, one of the gauged watershed of the Shakkar watershed 
(Fig. 1). The Shakkar River is a major stream of Narmada 
River. Shakkar watershed lies between 22°23′ N latitude 
and 78°52′ E longitude. The total catchment area of this 
watershed is 2220  km2. The topography of the watershed 
is undulating. The climate of the Shakkar watershed is dry, 
except in the monsoon season. Rainfall occurs mainly during 
June to October, due to the southwest monsoon. The soil in 
the watershed can be classified into clay to loamy texture. 
The collection of the hydrological data at the Gadarwada sta-
tion was started in 1990 by the Central Water Commission 
(CWC) Bhopal. The monthly streamflow data (Q)  (m3/s) 
from 1990 to 2015 were collected for the study. Streamflow 

Fig. 1  Location of the study 
area
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is mainly confined to the monsoon period  (June-October), 
then the models were tested for the monsoon period only. 
The statistical parameters of streamflow are shown in 
Table 1.

The data in multi-layer networks are divided into 60, 20 
and 20%, for calibration, verification and validation, respec-
tively. Then, the training dataset was divided again into two 
datasets, i.e., one for verification and another for validation. 
It is worth noting that this procedure is important to avoid 
system over-fitting during the training process (Jang et al. 
2002). The training dataset is intended to compute the gradi-
ent and update the network weights and biases, whereas the 
validation dataset is intended to quantify the general model 
performance (Lohani et al. 2012). The statistics criteria and 
box plot of the two datasets (calibration and validation) are 
given in Fig. 2 and Table 1.

3.2  Data Processing

Normalization is an essential stage before using the ANN-
based models. Such normalization is intended to make the 
data dimensionless and to confine the data within a desired 

range. There are two main reasons to proceed a pre-pro-
cessing procedure. This pre-processing procedure has been 
reported by Dawson and Wilby (2001) as important process, 
because it ensures that the variables may receive equal atten-
tion during the training and it makes the training algorithm 
more efficient. There are many equations developed and used 
by researchers for normalizing data. The following equation 
was used for normalizing the streamflow data (Huang et al. 
2014):

3.3  Development of AI Models

Usually, in hydrological forecasting models, researchers are 
interested in predicting output from inputs based on past 
time and there are no fixed rules. The objective on predict-
ing streamflow using antecedent values is to generalize a 
relationship of the following form (Wang et al. 2009):

(9)xi =
xi − xmin

xmax − xmin

Table 1  Summary statistics of the calibration and validation datasets (1990–2015)

SD Standard deviation, CV Coefficient of variation

Month Calibration period Validation period

Mean  (m3/s) SD  (m3/s) CV Skewness Kurtosis Mean  (m3/s) SD  (m3/s) CV Skewness Kurtosis

Jun 15.04 46.59 3.10 7.00 59.38 19.16 51.11 2.67 4.72 27.31
July 113.28 264.44 2.33 5.11 32.73 142.35 274.97 1.93 7.68 77.54
Aug 169.72 257.26 1.52 4.79 31.22 261.54 459.31 1.76 6.69 53.57
Sep 168.56 429.97 2.55 8.17 84.32 168.20 249.86 1.49 8.17 88.43
Oct 29.44 43.58 1.48 5.48 41.76 30.96 29.95 0.97 1.57 2.09

Fig. 2  Box plot of the validation 
and calibration datasets
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in which Xm is a m-dimensional input vector composed by 
variables x1, … xi, …, xm, whereas Y is the output variable. 
In streamflow modeling, the xi values may have different 
time lags and the Y value is usually the streamflow for the 
next step. Usually, the number of the previous values within 
the vector Xm is not known a prior. In streamflow forecasting 
by an AI model, the selection of appropriate model input is 
important to obtain a good result.

Furthermore, in the present study, to consider monthly 
periodicity, cyclic terms (cos2π.i/12) and (sin2π.i/12), (i = 1, 
2… 12) were considered also in the input vector. Then, the 
performance of the considered AI models was evaluated by 
some evaluation criteria based on Lohani et al. (2012). To 
develop an adequate time series model for streamflow fore-
casting, eight combinations of input vectors were considered 
as follows. At the first stage,  M1 to  M4 models considered 
only previous streamflow in the input vector, and at the sec-
ond stage,  M5 to  M8 models considered previous streamflow 
and cyclic term in the input vector:

M1: Q(t) = f (Q[t − 1]).
M2: Q(t) = f (Q[t − 1], Q[t − 2]).
M3: Q(t) = f (Q[t − 1], Q[t − 2], Q[t − 3]).
M4: Q(t) = f (Q[t − 1], Q[t − 2], Q[t − 3], Q[t − 4]).
M5: Q(t) = f (Q[t − 1], cos

[
2�.i∕12

]
, sin

[
2�.i∕12

]
).

M6: Q(t) = f
(
Q[t − 1], Q[t − 2], cos

[
2�.i∕12

]
, sin

[
2�.i∕12

])
.

M7: Q(t) = f
(
Q[t − 1], Q[t − 2], Q[t − 3], cos

[
2�.i∕12

]
,

sin
[
2�.i∕12

])
.

M8: Q(t) = f (Q[t − 1], Q[t − 2], Q[t − 3], Q[t − 4],

cos
[
2�.i∕12

]
, sin

[
2�.i∕12

])
.

3.4  Application of the Models

In this study, the network (grid) partitioning technique 
was used with ANFIS for modeling. There are two train-
ing algorithms, i.e., back-propagation and hybrid learning 
algorithms, which were used in this study for optimizing the 
parameters of the membership function. As for constructing 
the initial fuzzy model in the network partitioning technique, 
eight membership functions, which are supported by ANFIS, 
were used for fuzzification of input variables. In summary, 
at first, the initial structure of ANFIS model was constructed 
by using network (grid) partitioning technique and then it 
was trained with both of back-propagation and hybrid learn-
ing algorithms.

In genetic programing process, the selection of different 
initial random populations (called the training dataset in the 
genetic programming process), which are effective in the 
process for training the mechanism of governing process, 
will increase the complexity of the pattern, will use more 
memory, and will decrease model accuracy. Therefore, in 

(10)Y = f (Xm) architecting the streamflow, different patterns should be 
tested to choose the most effective set of observations as the 
training dataset. Another important point in GP modeling is 
selection of the model functions (operators) for calculation 
processes. In this study, the combination operator was used 
for forecasting monthly streamflow. Different input patterns 
were considered for GP modeling , which were divided in 
two main classes, including periodic and non-periodic. In 
addition, in the present study, as for the application of ANN, 
the tangent–sigmoid transfer function was used in the hidden 
layer, the linear transfer function was chosen for the output 
layer, and the Levenberg–Marquardt algorithm was selected 
for the training. For every input pattern, different network 
architectures were constructed and trained by changing the 
number of hidden layer and number of neurons. Then, the 
pattern with the lowest error was selected for further analy-
sis. For evaluating of GP and ANN model in forecasting the 
monthly streamflow, the used architectures of input variables 
were similar to those used for ANFIS model, i.e., four non-
periodic models and four periodic models.

4  Model Performance Evaluation

The model performance was evaluated according to the fol-
lowing indices: root mean square error (RMSE), mean abso-
lute error (MAE), correlation coefficient (r) and Nash–Sut-
cliffe coefficient of efficiency (CE).

4.1  Root Mean Square Error (RMSE)

This performance criterion determines the accuracy of the 
model in a quantitative sense. RMSE is defined as:

4.2  Mean Absolute Error (MAE)

This performance criterion is a simple weighted average of 
the absolute errors and is defined as:

4.3  Correlation Coefficient (r)

The correlation coefficient gives the strength of the relation-
ship between observed and modeled values as follows:

(11)RMSE =

√√√
√ 1

T

T∑

t=1

(Qt
o
− Qt

m
)2

(12)MAE =
1

T

T∑

t=1

||Q
t
o
− Qt

m
||
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4.4  Nash–Sutcliffe Coefficient of Efficiency (CE)

This performance criterion measures the goodness-of-fit of 
the model with respect to the observed values (Nash and 
Sutcliffe 1970) and is useful to assess the predictive charac-
teristic of hydrologic models.

where in all of the above equations, the subscript ‘o’ denotes 
to observed data and the subscript ‘m’ denotes to model 
predicted values. T is total number of data points, Qo is 
observed discharge, Qm is modeled discharge, Qt is discharge 
at time t and Qo , Qm are the mean values of observed and 
modeled discharges, respectively.

(13)r =

T∑

t=1

(Qt
o
− Qo)(Q

t
m
− Qm)

�
T∑

t=1

(Qt
o
− Qo)

2

T∑

t=1

(Qt
m
− Qm)

2

(14)CE = 1 −

T∑

t=1

(Qt
o
− Qt

m
)2

T∑

t=1

(Qt
o
− Qo)

2

5  Results and Discussion

The effectiveness of the models was examined by comparing 
the forecasted and observed streamflow values at the study 
location. The performance of the models in prediction of 
streamflow was estimated using a set of statistical metrics 
(RMSE, MAE and R) and visual inspection of data through 
line plots and box plots. The obtained results are as follows:

Table 2 shows the values of performance criterion of 
the AI models for the calibration and validation. Accord-
ing to the results, the ANFIS models without considering 
the periodicity of flows (i.e., M1 to M4 models) have lower 
accuracy than the other models that considered the perio-
dicity. Based on the results, the M1 and M3 models had the 
best value of evaluation criteria among non-periodic models, 
and among the models which considered periodicity (M5 
to M8 models), M5 and M7 models had the highest accu-
racy in forecasting monthly streamflow. Generally, the M7 
model showed the best accuracy among all eight considered 
models. Figure 3 shows the scatter plot of the observed and 
modeled monthly streamflow using the M7 model.

Furthermore, the performances during the training and 
validation periods of all GP models developed are given in 
Table 2. The results suggest that the periodic models (M5 to 
M8 Models) outperform the non-periodic models (M1 to M4 

Table 2  Performance criterion 
of the AI models during 
calibration and validation 
periods

M1 M2 M3 M4 M5 M6 M7 M8

ANFIS Calibration RMSE 96.10 95.23 97.72 89.09 96.22 97.18 98.39 80.89
MAE 68.01 68.03 68.10 78.17 68.01 68.09 58.14 58.27
R 0.83 0.83 0.81 0.89 0.83 0.81 0.80 0.87

Validation RMSE 108.61 90.70 98.77 100.95 98.78 89.83 97.50 85.57
MAE 88.53 74.66 68.59 86.70 68.54 58.62 58.49 58.93
R 0.75 0.84 0.81 0.78 0.85 0.83 0.98 0.84

GP Calibration RMSE 49.69 41.24 47.04 51.67 59.44 40.68 56.10 51.85
MAE 28.02 24.10 28.18 29.69 35.90 29.60 33.95 30.69
R 0.997 0.997 0.998 0.996 0.98 0.95 0.98 0.997

Validation RMSE 89.18 95.33 80.29 87.00 83.21 51.91 72.17 87.24
MAE 58.03 62.26 57.54 56.28 46.58 32.63 46.49 57.98
R 0.80 0.78 0.84 0.82 0.84 0.88 0.86 0.83

ANN Calibration RMSE 220.99 207.26 193.91 189.47 219.29 206.53 192.71 190.07
MAE 58.69 56.25 60.19 56.88 57.40 57.38 60.98 57.71
R 0.79 0.74 0.87 0.89 0.80 0.84 0.88 0.89

Validation RMSE 269.67 256.00 256.91 252.53 265.87 255.34 257.36 252.01
MAE 67.96 55.68 69.02 61.40 65.49 56.16 70.61 62.08
R 0.77 0.76 0.74 0.76 0.74 0.75 0.74 0.80
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models). The input pattern with 3 months lag time had the best 
performance among the non-periodic models, and among peri-
odic models, M6 model, considering the seasonality effect and 
2 months lag time, showed the highest accuracy during the vali-
dation period and was selected as the best pattern for construct-
ing GP. Figure 4 presents the comparison between measured 
and forecasted monthly streamflow using the best pattern of GP 
and M6 model, during validation period.

Table 2 shows that the input pattern including streamflow 
with 2 months lag time had the best performance among the 
non-periodic models with ANN, but considering the periodic-
ity in input patterns resulted in an improvement in the accuracy 
of the models, and thus M8 model was selected as the best 
architecture based on the MAE and RMSE values. According 
to the results, the values of MAE and RMSE for non-periodic 
models are greater than the values for periodic models. This 
result was observed in all considered methods. Figure 5 pre-
sents the comparison between observed and forecasted stream-
flow time series by using the selected ANN (M7 model).

The time series of monthly mean streamflow forecasted 
and comparison between observed and forecasted values of 

all considered AI methods are presented in Fig. 6. Accord-
ing to the results (Table 3), it can be observed that all 
considered AI methods had almost the same performance 
in forecasting the streamflow, but the ANFIS had better 
performance than two other methods. It should be men-
tioned again that the performance of the AI methods were 
compared for the best input pattern, i.e., for the ANFIS 
and ANN, the results of M7 model, and for the GP, the 
results of M6 model were compared to identify the suitable 
method for forecasting the streamflow time series.

According to the literature review, AI techniques are 
superior to conventional methods in predicting streamflow 
(Asati and Rathore 2012). Some exemples are as follows. 
It was observed that streamflow prediction by ANN_Con-
jugate gradient and ANN_Cascade correlation was supe-
rior compared to that using ANN_Back propagation and 
ANN_Levenberg–Marquardt (Kisi 2007). Al-Aboodi et al. 
(2017) compared the data-driven modeling techniques for 
predicting river flow in an arid region. It was observed that 
ANFIS model was better than ARIMA model, and slightly 
better than ANN model. The ANFIS model produced a 

Fig. 3  Time series of monthly 
mean streamflow of the ANFIS 
(validation results)

Fig. 4  Time series of monthly 
mean streamflow of the GP 
(validation results)
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slightly better result than multi-layer perceptron neural 
network (MLP-NN) model with lower RMSE and MAPE 
values (Adli Zakaria et al. 2021).

6  Conclusion

The present work aimed to identify the most suitable mod-
els for forecasting monthly streamflow, considering three 
AI methods, including ANFIS, ANN and GP. The same 
basis of comparison, calibration and validation datasets 

were applied for all the aforementioned models, and four 
performance statistical indices (MAE, RMSE, r and CE) 
were applied to evaluate the performance of the various 
developed AI models. Then, according to the results, 
ANFIS has the best performance in forecasting streamflow 
time series, and the GP and ANN are the next best, respec-
tively. It should be mentioned that the results presented 
in Table 3 were calculated for the best pattern all every 
AI methods, which were selected based on the results in 
Table 2. Moreover, it was observed that in all considered 
AI methods, the models with periodic input architecture 

Fig. 5  Time series of monthly mean streamflow estimated by the ANN (validation results)

Fig. 6  Time series of monthly mean streamflow forecasted by the different AI methods (validation results)
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had better performance compared to those models without 
considering the periodic nature of the underlying process 
under consideration. The outcomes of ANFIS model could 
be useful for hydrologists and environmentalists to con-
struct truthful smart decision-support system for precise 
prediction of streamflow in Shakkar River. In future, other 
AI models can be employed to evaluate their performance 
in forecasting streamflow in Shakkar River. Besides, dif-
ferent optimization methods can be used for the optimiza-
tion of AI model parameters to improve their prediction 
capability.
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